Regulation of Intestinal GLP-1 and GLUT2 genes underlie hypoglycemia in Desplatsia subericarpa (Bocq)-Fed Wistar Rats
الموضوعات : مجله گیاهان داروییالاپسی اموتیووای 1 , اوواکپری-یوو اقال 2 , ایدو مکدونالد 3
1 - Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko
2 - Department of Plant Biology and Biotechnology, University of Benin, Benin City, P.M.B. 1154. Edo State, Nigeria
3 - Department of Plant Biology and Biotechnology, University of Benin, Benin City, P.M.B. 1154. Edo State, Nigeria
الکلمات المفتاحية: Diabetes, Glucagon-like peptide-1, Glucose transporter 2, Kidney injury molecule-1, Iinterleukin-1-, Desplatsia subericarpa,
ملخص المقالة :
Background & Aim:Indigenous people of West Africa use the whole-leaf of Desplatsia subericarpa (Bocq) in anti-diabetic soup delicacy. This study was designed to validate the anti-diabetic claims and delineating possible mechanisms. Experimental:RT-PCR method was used to investigate regulation of intestinal glucose transporter 2 (GLUT2) and glucagon-like peptide-1 (GLP-1), and pancreatic insulin, L-type voltage-gated calcium channel genes. Insulin exocytosis was also monitored using ELISA method. The kidney sample was investigated for biomarkers of injury (kidney injury molecule-1 (KIM-1) and interleukin-1-β (IL-1β)). Results: GLP-1 up-regulation, GLUT2 down-regulation and increased insulin exocytosis but not increased insulin gene expression was observed in animals after a 3-day culinary exposure to D. Subericarpa leaves. This mechanism may explain hypoglycemia in streptozotocin-induced diabetes in animals in this study. KIM-1 and IL-1-β genes were marked up regulated in normal animals exposed (14-day) to D. Subericarpa. Recommended applications/industries: D. Subericarpa whole leaf contains phytochemicals principles with anti-diabetic potency but may be nephrotoxic. Therefore, for clinical use, selective fractionation of active components from the toxic components is desirable.
Andreucci, M., Faga, T., Riccio, E., Sabbatini, M., Pisani, A., & Michael, A. 2016. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis, 9, 205-221.
Barham, D., & Trinder, P. 1972. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, 97(151), 142-145.
Brown, M. S., & Goldstein, J. L. 1999. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A, 96(20), 11041-11048.
Burkill, H. M. 2000. The useful plants of West Africa. (2 ed. Vol. 5). United Kingdom: families S-Z, Addenda. Royal Botanic Gardens, Kew, Richmond,.
Chen, L., Alam, T., Johnson, J. H., Hughes, S., Newgard, C. B., & Unger, R. H. (1990. Regulation of beta-cell glucose transporter gene expression. Proc Natl Acad Sci U S A, 87(11), 4088-4092.
Ezcurra, M., Reimann, F., Gribble, F. M., & Emery, E. 2013. Molecular mechanisms of incretin hormone secretion. Curr Opin Pharmacol, 13(6), 922-927.
Faubel, S., Lewis, E. C., Reznikov, L., Ljubanovic, D., Hoke, T. S., Somerset, H., . . . Edelstein, C. L. 2007. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther, 322(1), 8-15.
Im, S. S., Kang, S. Y., Kim, S. Y., Kim, H. I., Kim, J. W., Kim, K. S., & Ahn, Y. H. 2005. Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes, 54(6), 1684-1691.
Inoue, N., Shimano, H., Nakakuki, M., Matsuzaka, T., Nakagawa, Y., Yamamoto, T., . . . Yamada, N. 2005. Lipid synthetic transcription factor SREBP-1a activates p21WAF1/CIP1, a universal cyclin-dependent kinase inhibitor. Mol Cell Biol, 25(20), 8938-8947.
Jafri, L., Saleem, S., Calderwood, D., Gillespie, A., Mirza, B., & Green, B. D. 2016. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion. Peptides, 78, 51-58.
Keay, R. W. J. 1958. Flora of West Africa (2 ed. Vol. 1, part 2). London, United Kingdom: Crown Agents for OverseaGovernment and Administrations.
Kellett, G. L., & Helliwell, P. A. 2000. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J, 350 Pt 1, 155-162.
Lan, H., Lin, H. V., Wang, C. F., Wright, M. J., Xu, S., Kang, L., . . . Kowalski, T. J. 2012. Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways. Br J Pharmacol, 165(8), 2799-2807.
Lee, C. T., Wu, M. S., Lu, K., & Hsu, K. T. 1999. Renal tubular acidosis, hypokalemic paralysis, rhabdomyolysis, and acute renal failure--a rare presentation of Chinese herbal nephropathy. Ren Fail, 21(2), 227-230.
Leto, D., & Saltiel, A. R. 2012. Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol, 13(6), 383-396.
MacDonald, P. E., El-Kholy, W., Riedel, M. J., Salapatek, A. M., Light, P. E., & Wheeler, M. B. 2002. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes, 51 Suppl 3, S434-442.
Marchetti, P., Lupi, R., Del Guerra, S., Bugliani, M., D'Aleo, V., Occhipinti, M., . . . Masini, M. 2009. Goals of treatment for type 2 diabetes: beta-cell preservation for glycemic control. Diabetes Care, 32 Suppl 2, S178-183.
McKillop, A. M., Moran, B. M., Abdel-Wahab, Y. H., Gormley, N. M., & Flatt, P. R. 2016. Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia. 59(12):2674-85.
Meloni, A. R., DeYoung, M. B., Lowe, C., & Parkes, D. G. 2013. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. Diabetes Obes Metab, 15(1), 15-27.
Nistor Baldea, L. A., Martineau, L. C., Benhaddou-Andaloussi, A., Arnason, J. T., Levy, E., & Haddad, P. S. 2010. Inhibition of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional pharmacopeia. J Ethnopharmacol, 132(2), 473-482.
Nohturfft, A., DeBose-Boyd, R. A., Scheek, S., Goldstein, J. L., & Brown, M. S. 1999. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci U S A, 96(20), 11235-11240.
Pols, T. W., Auwerx, J., & Schoonjans, K. 2010. Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease. Gastroenterol Clin Biol, 34(4-5), 270-273.
Sato, H., Genet, C., Strehle, A., Thomas, C., Lobstein, A., Wagner, A., . . . Saladin, R. 2007. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun, 362(4), 793-798.
Schaap, F. G., Trauner, M., & Jansen, P. L. 2014. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol, 11(1), 55-67.
Velasquez, D. A., Beiroa, D., Vazquez, M. J., Romero, A., Lopez, M., Dieguez, C., & Nogueiras, R. 2010. Central GLP-1 actions on energy metabolism. Vitam Horm, 84, 303-317.
Wacker, D. A., Wang, Y., Broekema, M., Rossi, K., O'Connor, S., Hong, Z., . . . Robl, J. A. 2014. Discovery of 5-chloro-4-((1-(5-chloropyrimidin-2-yl)piperidin-4-yl)oxy)-1-(2-fluoro-4-(methyls ulfonyl)phenyl)pyridin-2(1H)-one (BMS-903452), an antidiabetic clinical candidate targeting GPR119. J Med Chem, 57(18), 7499-7508.