In vitro and in vivo evaluation of the anti-diabetic, anti-hyperlipidemic and antioxidant properties of aqueous extract of Millettia laurentii bark (Fabaceae)
الموضوعات : مجله گیاهان داروییویلیام آرنولد تازون 1 , مارتین فونکوا 2 , ماریل آناستازی زالی 3 , یوووپ جانویر 4 , گوی تاکوئیسو گومتو 5 , اینل ماکاموه 6 , گابن آزانتسا کینگو 7
1 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
2 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
3 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
4 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
5 - موسسه تحقیقات پزشکی و مطالعات گیاهان دارویی (IMPM)، یائونده-کامرون؛
6 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
7 - آزمایشگاه تغذیه و بیوشیمی تغذیه، گروه بیوشیمی، دانشگاه یائونده، کامرون.
الکلمات المفتاحية: Inflammation, plant extract, Lipid profile, Diabetes,
ملخص المقالة :
Background & Aim: Hyperglycemia, oxidative stress and dyslipidemia play a major role in the pathophysiology of diabetes and its macro and microvascular complications. Therefore, managing hyperglycemia, oxidative stress and dyslipidemia is an effective way to control diabetes. The present study aimed to evaluate in vitro and in vivo the anti-diabetic, anti-hyperlipidemic and antioxidant potential of the aqueous extract of M. laurentii barks.Experimental: The M. laurentii barks were harvested, treated, dried, ground and an aqueous extraction was carried out (1:10 weight/volume). Subsequently, the anti-hyperglycemic (inhibition of α-amylase and invertase activity) and antioxidant (DPPH radical scavenging, iron III reduction and metal chelating) properties of the aqueous extract was evaluated in vitro. In the in vivo study, 20 male Wistar strain rats with an average weight of 230 to 250 gramme divided into two groups; a negative control group (NC) and a batch of 15 rats. This last batch received an intraperitoneal injection of 45mg/kg BW of streptozotocin then subdivided into 3 groups of 5 rats: positive control group (PC) receiving distilled water, a test group receiving aqueous extract of M. laurentii barks (AEML) at the dose of 300 mg/kg BW and a reference group receiving metformin at 20 mg/kg BW. After 21 days of experimentation, the animals were sacrificed, the plasma, serum, hemolysate and liver homogenate were used to evaluate the biomarkers of oxidative stress (catalase, MDA), lipid profile (triglyceride, total cholesterol and HDL-cholesterol) and immunological biomarkers (CRP and NFS).Results: It emerged that the aqueous extract presented in vitro an anti-hyperglycemic activity (inhibition of invertase and alpha amylase with IC50 values 0.015 and 0.38 mg/mL, respectively) and antioxidant activity (DPPH radicals scavenging, reduction of iron III and inhibition of haemolysis). The extract also reduced in vivo, chronic hyperglycemia by -28.44% after 21 days of treatment, improved endogenous antioxidant status, inflammation and lipid profile.Recommended applications/industries: The findings show that AEML has an anti-diabetic, anti-hyperlipidemic and antioxidant properties. Therefore, could be used traditionally in the management of diabetes and its complications in Cameroon. Extending the current control of chronic hyperglycemia is urgently needed in Cameroon to protect human lives.
Abdulazeez, E., Wudil, A. and Yunusa, A. 2011. Effect of partially purified angiotensin converting enzyme inhibitory proteins from moringa oliefera leaves on alloxane induced diabetic rats. Ife Journal of Science, 19(1): 109.
Adrien, T., Clement, L., Gédéon, N., Joseph, D., Koto-Te-Nyiwa N., Damien S. and DorothéeDinangayi., Pius, T. 2019. Ethnobotanical and ecological studies of plants used in the treatment of diabetes in Kwango, Kongo central and Kinshasa in the Democratic Republic of the Congo. International Journal of Diabetes and Endocrinology, 4(1): 18-25.
Althunibat, O., Al Hroob, A., Abukhalil, M., Germoush, M., Bin-Jumah, M. and Mahmoud, A. 2019. Fisetin ameliorates oxidative stress, inflammation, and apoptosis in diabetic cardiomyopathy. Life Science, 15(221): 83-92
Arbos, K., Ligia, M., Lucielly, B., Cid, A. and Almeriane, M. 2008. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutrition Research, 28: 457-463.
Archana, N. and Archana, P. 2013. Role of inflammation in development of diabetic complications and commonly used inflammatory markers with respect to diabetic complications. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2): 1-5.
Ashok, K., Mangesh, T., Sanjay, K. and Krishna, G. 2019. Expert group consensus opinion: role of anti-inflammatory agents in the management of type-2 diabetes (T2D). The Journal of the Association of Physicians of India, 67: 65-74.
Atef, A. and Fawziah, A. 2017. Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albinos rats. Saudi Journal of Biological Science, 26(2019): 118-128.
Bahadoran, Z., Mirmiran, P. and Azizi. 2013. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes and Metabolic Disorders, 12: 1-9.
Brand, M. 1996. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology Medicine, 100: 14-31.
Chang, K.J. 2000. Effect of taurine and beta alanine on morphological changes of pancreas in streptozotocine induced diabetic rats. Experimental Biology and Medicine, 483: 571-577.
Djaouida, D. and Loubna, B. 2019. Contribution de l’effet antidiabétique d’un extrait aqueux de deux plantes (Opuntia ficus indica L et Nigella sativa L) issu de la région de Batna sur des souris (Wistar albinos) diabétique à l’alloxane. (Mémoire). Université de Biskra. Alegerie, Pp. 48
Eid, H.M., Nachar, A., Thong, F., Sweeney, G. and Haddad, P.S. 2015. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacognosy Magazine, 11(41): 74–81.
Onsiyor, E.J.B., Akaffou, N.A., Zahoui, O.S. and Traore, F. 2019. Effects antidiabétiques de l’extrait aqueux de Ageratum conyzoïdes (Astéraceae) chez les rats rendus diabétiques par pancréatectomie partielle et évaluation de leurs paramètres hématologiques. International Journal of Biological and Chemical Science, 13(3): 1621-1628.
Fagninou, A., Tougan, U., Nekoua, M., Fachina, R., Koutinhouin., Akadiri, Y. 2019. Diabetes mellitus: classification, epidemiology, physiopathology, immunology, risk factors, prevention and nutrition. International Journal of Advanced Research, 7(7): 855-863.
Ferdinand, E., Boris, T., Ruth, D., Hippolyte, M., Alex, T., Abomo, N. and Gabriel, M. 2020. Phytochemical screening and antioxidant potential of aqueous extracts of Millettialaurenti, Lophiraalata and Miliciaexcelsa, commonly used in the Cameroonian pharmacopoeia. European Journal of Medicinal Plants, 31(11): 11-23.
Foo, A.Y. and Bais, R. 1998. Amylase measurement with 2-chloro-4-nitrophenyl maltotrioside as substrate. Clinica Chimica Acta, 27(2): 137-147.
Friedewald, W., Levy, R. and Friedrickson, D. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. Clinical Chemistry, 18(6): 499-502.
Gaikwad, B., Mohan, K. and Rani, M. 2014. Phytochemicals for diabetes management. Pharmaceutical Crops, 5 (1): 11-28.
Ikewuchi, J. and Ikewuchi, C. 2009a. Alteration of plasma lipid profiles and atherogenic indices by Stachytarpheta jamaicensis L. (Vahl). Biochemistry, 21(2): 71-77.
Ikewuchi, J. and Ikewuchi, C. 2009b. Alteration of plasma lipid profile and atherogenic indices of cholesterol loaded rats by Tridaxprocumbens Linn: Implications for the management of obesity and cardiovascular diseases. Biochemistry, 21(2): 95-9.
International Diabetes Federation (IDF member(s) In Cameroon). Prevalence of Diabetes in adults; 2020.
Katalinié, V., Milos, M., Musi, I. and Boban, M. 2004. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chemistry, 86. 593-600.
Kumar, V., Prakash, M. 2012. Anti diabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats. Asian Pacific Journal of Tropical Biomedicine, 543-546.
Kyung, J., Myoung, S., Keunae, J. and Hwang, J. 2011. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 411(1): 219-225.
Lalhlenmawia, H., Kumarappan, C., Bhattachharjee, B. and Mandal, S. 2007. Antidiabetic activity of mallotusroxburghianus leaves in diabetic rats induced by streptozocin. Pharmacology online, 3: 244-254.
Mallique, Q., Jian, X., Yuejun, Y., Yuancai, L. and Shugeng, C. 2020. Natural Nrf2 activators from juices, wines, coffee, and cocoa. Beverages, 2020; 6(4):68.
Manik, I., Mani, R. and Bhaskar, R. 2017. Streptozotocin is more convenient than Alloxan for the induction of Type 2 diabetes. International Journal of Pharmacological Research, 7(1): 6-11.
Mojica, L., Meyer, A., Berhow, M. and Mejia, E. 2015. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in-vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69: 38-48.
Mona, M., Wadah, O., Elrashied, G., Zuheir, O., Bashier, O., Hassan, K. and Magdi, M. 2014. Secondary metabolites as anti-inflammatory agents. The Journal of Phytopharmacology, 3(4): 275-285.
Rao, G., Kamath, U., Raghothama, C., Pradeep, K.S. and Rao, P. 2003. Maternal and fetal indicator of oxidative stress in various obstetric complications. Indian Journal of Clinical Biochemistry, 18: 6-80.
Oršolic, N., Goluža, E., Dikic´, D., Lisiˇci´c, D., Sašilo, K., Rođak, E., Jeleˇc, Ž., Lazarus, M. and Orct, T. 2014. Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. European Journal of Nutrition, 53: 1217-1227.
Oyaizu, M. 1986. Studies on products of browning reaction: Antioxidative activity of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition. 44: 307-315.
Pinés, C., Bellido, C. and Ampudia-Blasco, F. 2018. Actualización sobre hiperglucemia posprandial: fisiopatología, prevalencia, consecuenciase implicaciones para eltratamientodela diabetes. Revista Clinica Espanola, 220 (1) : n57-68.
Procházková, D., Bousová, I. and Wilhelmová, N. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4): 513-23.
Rasouli, H., Hosein, M., Khodarhami, R. 2017. Polyphenols and their benefits: A review. International Journal of Food Properties, 20(2): 1700-1741.
Ritchie, R.F., Alper, C.A., Graves, J., Pearso, N. and Larson, C. 1973. Automated quantitation of proteins in serum and other biologic fluids. American Journal of Clinical Pathology, 59(2): 151-159.
Saeed, S., Abasalt, B. and Tahereh, F. 2017. Attenuation of oxidative stress and inflammation by Portulaca oleracea in Streptozotocin-induced diabetic rat. Journal of Evidence-Based Complementary & Alternative Medicine, 22(4): 562-566.
Singh, S., Vats, P., Suri, S., Shyram, R., Kumria., Rangganathan, S. and Sriatharan, K. 2004. Effet of an antidiabétic extract of Catharantus roseus on enzymatic activities in spectozotocin induced diabetic rats. Journal of Ethnopharmacology, 76: 269-277.
Sinha, K. 1972. Colorimetry assay of catalase. Analytical Biochemistry, 47(2): 389394.
Trinder, P. 1969. Determination of blood glucose using 4-aminophenazone as oxygen acceptor. Journal of Clinical Pathology, 22(2): 246.
Wenbin, W., Yukiat, L. and Zhenyu, T. 2019. Antidiabetic, antihyperlipidemic, antioxydant, anti-inflammatory activities of ethanolic seed extract of Annona reticulata L. in Streptozotocin induiced diabetic rats. Frontiers in Endocrinology, 10: 1-15.
Xueping, Z., Yang. S., Chen, J. and Su, Z. 2019. Unraveling the regulation of Hepatic Gluconeogenesis. Frontiers in Endocrinology, 9 : 1-17.
Yagi, K. 1976. Simple fluorometric assay for lipoperoxyde in blood plasma. Biochemistry Medicine, 15: 212-216.
Znifeche, A. 2019. Etude ethnopharmacologique des plantes antidiabétiques de la ville de Fès et évaluation de l’effet antidiabétique de l’extrait phénolique des feuilles d’Olea europaea. (Mémoire). Université Sidi Mohamed Ben Abdellah. Maroc. Pp.54.