ارزیابی تحمل جو به عنصر مس در مرحله جوانهزنی بذر و رشد اولیه گیاهچه در حضور قارچ تریکودرما
الموضوعات :مهدیه مظاهر 1 , سعید خماری 2 , احمد جوادی 3 , مهدی داوری 4
1 - کارشناسیارشد، علوم و تکنولوژی بذر، گروه زراعت، دانشگاه محقق اردبیلی، ایران
2 - دانشیار، فیزیولوژی گیاهان زراعی، گروه زراعت، دانشگاه محقق اردبیلی، ایران
3 - دکتری، علوم و تکنولوژی بذر، گروه زراعت، دانشگاه محقق اردبیلی، ایران
4 - دانشیار، بیماری شناسی گیاهی- قارچشناسی، گروه گیاهپزشکی، دانشگاه محقق اردبیلی، ایران
الکلمات المفتاحية: هیدروپرایمینگ, بیوپرایمینگ, تلقیح با بستر کشت, نمک مس,
ملخص المقالة :
غلظت بالای عنصر مس باعث مسمومیت و آسیب به سلول های موجودات زنده می شود. قارچ تریکودرما با آزادسازی ترکیباتی، مقاومت به تنش های زنده و غیرزنده را تحریک می کند. به منظور ارزیابی اثر قارچ Trichoderma harzianum T447 بر رشد و استقرار گیاهچه های جو بهاره تحت اعمال چهار سطح فلز سنگین مس (CuSO4)، آزمایش حاضر به صورت فاکتوریل بر پایه طرح بلوک های کامل تصادفی در سه تکرار اجرا شد. عوامل آزمایشی شامل چهار سطح پیش تیمار (شاهد، هیدروپرایمینگ، بیوپرایمینگ، تلقیح بستر کشت با قارچ تریکودرما) و چهار سطح سولفات مس(2، 40، 80، 120 میکرومولار) در محلول هوگلند و آرنون بود. نتایج نشان داد سطوح مختلف CuSO4 بر طول گیاهچه و وزن خشک بوته تا سطح سوم (80 میکرومولار) اثر افزایشی و در سطح چهارم (120 میکرومولار) اثر کاهشی داشت، تلقیح تریکودرما باعث افزایش حدوداً 23، 6، 62، 52، 13 و 27 درصدی بهترتیب درصد سبز شدن، سرعت سبز شدن، یکنواختی سبز شدن، قدرت گیاهچه، طول گیاهچه و وزن خشک بوته گیاهچه جو شد. اثرات متقابل تیمارهای آزمایشی در سطح یک درصد بر پرولین معنی دار بود و افزایش سطوح عنصر مس باعث افزایش محتوای پرولین گردید، پیش تیمار بذرها، با افزایش مقدار پرولین تا حدودی اثرات سوء ناشی از بیش بود مس را کاهش داد. به طور کلی تلقیح تریکودرما باعث افزایش طول گیاهچه و وزن خشک بوته، شاخص های سبز شدن و محتوای پرولین گیاه جو شد در نتیجه گیاه جو می تواند تا سطح 80 میکرومولار مس مقاومت داشته باشد.
References
Aidid, S.B. and Okamoto, H. 1993. Responses of elongation rate, turgor pressure and cell wall extensibility of stem cells of impatiens balsmina to lead, copper and zinc. Biometals. 6:245- 249.
Altomare, C., Norvell, W.A., Bjorkman, W.A. and Tharman, G.E. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai. Applied and Environmental Microbiology. 65: 2926-2933.
Anand, P., Isar, J., Saran, S. and Kumar Saxena, R. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology. 97: 1018-1025.
Asgarilajayer, H., Motashareezadeh, B., Thavaghebi, GH. and Hadiyan, J. 2015. Effect of copper and zinc application on concentration and absorption of low-energy food elements (copper, zinc, iron, manganese) and high intake (phosphorus) in Satureja hortensis L. herb in greenhouse conditions. Science and technology of greenhouse cultivation. 19: 95-111. (In Persian)
Ashraf, M. and Foolad, M.R. 2005. Pre-sowing seed treatment a shotgun approch to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv. Agron. 88: 223-271.
Azarmi, R., Hajieghrari, B. and Giglou, A. 2011. Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal Biotechnology. 10:5850-5855.
Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39: 205-207.
Benitez, T., Rincon, A.M., Limon, M.C. and Codon, A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology. 7: 249-260.
Bennett, A.J. and Whipps, J.M. 2008. Dual application of beneficial micro-organisms to seed during drum priming. Applied Soil Ecology. 38:83-89.
Bradford, K.Y. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions, Horticultural Science. 21: 1105-1112.
Bray, C.M., Davison, P.A., Ashraf, M. and Taylor, R.M. 1989. Biochemical events during osmopriming of leek seed, Annals of Applied Biology. 102: 185-193.
Cardona, R. and Rodriguez, H. 2006. Effects of Trichoderma harzianum fungus on the incidence of the charcoal rot disease on sesame. Revista de la Facultad Agronomia. 23:42-47.
Cervantes, C. and Gutierrez Corona, F. 1994. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiology Reviews. 14: 121-138.
Chien-The, C., Tsai-Huei, C., Kuo-Fu, L. and Chih-Yu, C. 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science, 166: 103–111.
Choudhury, R. and Srivastava, S. 2001. Mechanism of zinc resistance in Pseudomonas putidastrain S4. World Journal of Microbiology and Biotechnology. 17: 149-153.
Coombes, A.J., Lep, N.W. and Phipps, D.A. 1976. Effect of copper on IAA oxidase activity in root tissue of barly Hordeum vulgare L. zephyr. Plant Physiology. 55: 236-242.
El-Jaoual, T. and Cox, D.A. 1998. Manganese toxicity in plants. Journal of Plant Nutrition. 2: 353-386.
Faghihabdollahi, L., Pirdashti, H., Yaaghoobiyan, Y. and Alavi, M. 2016. Outcome of the application of Piriformospora indica and Trichoderma tomentosum fungi on the growth of basal plant Ocimum basilicum L. at different levels of copper nitrate. Journal of Soil Management and Sustainable Production. 1: 113-127. (In Persian)
Farooq, M., Basra, S.M.A., Wahid, A., Khaliq, A. and Kobayashi, N. 2009. Rice seed invigoration, a review. Organic farming, pest control and remediation of soil pollutants. Sustainable Agriculture Reviews. 1: 137-175.
Farooq, M.S., Basra, M.A., Tabassum, R. and Afzal, I. 2006. Enhancing the performance of direct seeded fine rice by seed priming, Plant Prod. Sci. 4: 446-456.
Fernandes, J.C. and Henriques, F.S. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review. 57: 246-273.
Finch-Savage, W.E., Dent, K.C. and Clark, L.J. 2004. Soak conditions temperature following sowing influence the response of maize Zea mays L. seeds to on-farm priming core-sowing seed soak. Field Crops Research. 90: 361-374.
Forotan, B., Pirdashti, H. and Yaaghoobiyan, Y. 2015. The effect of seed biological treatments on the resistance of Foeniculum vulgare L. to causal stress in germination and seedling stages. Journal of Seed Research. 2: 1-12. (In Persian)
Harman, G. 2006. Overview of mechanisms and uses of Trichoderma spp. The American Phytopathological Society. 96:190-194.
Harman, G., Howell, Ch.R., Viterbo, A., Chet, I. and Lorito, M. 2004. Trichoderma species opportunistic, avirulent plantsymbionts. Nat. Rev. Microbiolo. 2:43-56.
Harris, D., Pathan, A.K., Gothkar, P., Joshi, A., Chivasa, W. and Nyamudeza, P. 2001. On-farm seed priming: using participatory method srevive and refine a key technology. Agricultural Systems Journal. 69: 151-164.
He, J.Y., Ren, YF., Zhu, C. and Jiang, D. 2008. Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice Oryza sativa. Rice Sci. 4:319-325.
Heydecker, W. and Coolbear P. 1977. Seed treatments for improved performance – survey and hydration, Annals of Applied Biology. 53: 753-757.
Iraqi, M. 2012. The role of Trichoderma species in increasing plant growth. Plant Pathology Knowledge. 1:34-42. (In Persian)
Iraqi, M., Rahnama, K. and Latifi, N. 2012. Effect of Trichoderma harzianum in Growth of Tomatoes. Journal of Plant Production Research. 2: 107-118. (In Persian)
Jisha, K.C., Vijayakumari, K. and Puthur, J.T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35: 1381-1396.
Jovicic Petrovic, J., Danilovic, G., Curcic, N., Milinkovic, M., Stosic, N., Pankovic, D. and et al. 2014. Copper tolerance of Trichoderma species. Archives of Biological Sciences. 1: 137-142.
Kalai, T., Khamassi, K.A., Teixeira da Silva, J., Gouia, H. and Bettaieb Ben-Kaab, L. 2014. Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds. Archives of Agronomy and Soil Science. 6: 765-783.
Kargarkhorrami, S. and Jameei, R. 2016. Effect of different concentrations of copper and nickel on growth and physiological indices in (Hibiscus esculentus L.). Process and Plant Function. 11: 44-34. (In Persian)
Keshtehgar, M., Afshar, A. and Saeid, F. 2015. Effect of heavy metals of copper and lead on some growth traits, proline content and lipid peroxidation in two type of bean cultivars. Scientific Journal of Ecophysiology of Agricultural Plants. 3: 363-374. (In Persian)
Khodabandeh, N. 2013. Grains, 11th edition, Tehran University Press, Tehran. (In Persian)
Kuznetsov, V.V. and Shev yakova, N.I. 2007. Prolin under stress: biological role, metabolism and regulation. Russ. J. Plant Physiol. 46: 274-287.
Marschner, H. 1985. Mineral nutrition of higher plants. 2nd Ed. Academic Press. New York.
Mighani, F., Ghorbanli, M. and Asadollahi, B. 2008. The role of mineral ions and proline in tolerance of two cultivars of rapeseed (Brassica napus L.) to copper stress. Tarbiat Moallem University of Science. 1: 865-876. (In Persian)
Mohaseli, V. 2003. Effect of different levels of copper on growth and chemical composition of wheat cultivars. Research and development in agriculture and horticulture. 61: 25-31. (In Persian)
Motaghiyan, A., Pirdashti, H., Bahmanyar, M. and Motaghiyan, B. 2016. Effect of simultaneous use of urban waste compost and three species of Trichoderma fungi. Trichoderma spp on growth characteristics and absorption of nutrients in Lepidium sativum L.. Journal of Soil Management and Sustainable Production. 4: 21-40. (In Persian)
Peralta, J. R., Gardea-Torresdey, J. K., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E. and Parsons, J.G. 2000. Study of the effect of heavy metals on seed In:germination and plant growth on alfalfa plant Medicago sativa grown in solid media. In: Proceeding of the 2000 conference on hazardous waste research, El Paso. USA.
Peyghambardoost, H. and Uioladghafari, A. 2010. Introduction to the technology of pasta products, Amidi Publishing House. (In Persian).
Prasad, M.N.V. 1995. The inhibition of maize leaf chorophylls, carotenoids and gas exchange functions by cadmium. Photosynthetica. 31: 635-640.
Raeeisi, M., Asrar, Z. and Puorseyedi, Sh. 2011. Investigation of the interaction of Sodium Nitroposide (SNP) and Copper on some growth parameters and physiology of Lepidium sativum L.. Iranian Journal of Plant Biology. 1 (2):55-76. (In Persian)
Rawat, L., Singh, Y., Shukla, N. and Kumar, J. 2011. Alleviation of the adverse effects of salinity stress in wheat Triticum aestivum L. by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil. 347: 387-400.
Reddy, P.P. 2013. Recent Advances in Crop Protection. Springer, New Delhi, India.
Robinson, N.J. and Winge, DR. 2010. Copper metallochaperones. Annual Review of Biochemistry. 79: 537-562.
Roshani, M. and Lariyazdi, H. 2011. Effects of interaction of copper, ascorbate and gibberellin on proline and activity of peroxidase and catalase enzymes in two canola cultivars. Fifth National Conference on New Ideas in Agriculture, Khuorasgan, Iran. (In Persian).
Salari, A., Rohani, H, Mahdikhanimoghadam, A., Sabeririseh, R. and MehrabiKooshki, M. 2015. Efficiency of two methods of crop and soil - Trichoderma consumption on growth indices of tomato plants. Journal of Plant Protection (Science and Technology of Agriculture). 4:500-507. (In Persian)
Ulrich, S.E. 2011. Barley Production Improvement and Uses. Blackwell Publishing Ltd.
Windham, M.T., Elad, Y. and Baker, R. 1986. A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology. 76:518-521.
Wojnarowiez, G., Jacquard, C., Devaux, P., Sangwan, R.S. and Clement, C. 2002. Influence of copper sulfate on another culture in barley Hordeum vulgare L. Plant Science. 162: 843-847.
Yazdani, M., Pirdashti, E., Tajik, M. and Bahmaniar, M. 2009. Effect of Trichoderma spp. And various types of organic fertilizers on soybean growth. Electronic Journal of Crop Production. 3: 65-82. (In Persian)
Yousefzai, F., Pour Akbar, L., Farhadi, H. and Molly, R. 2016. Investigating the effect of copper nanoparticles and copper chloride solution on germination and some morphological and physiological factors of Ocimum basilicum L. Journal of Plant Research. 1: 1-12. (In Persian)
Zareei, Zh. and Heydari, H. 2017. Evaluation of sunflower water use efficiency in surface and phytochemical irrigation techniques. Environmental stresses in agricultural sciences. 4:521-530. (In Persian)