برآورد مقدار آب آبیاری گیاه گندم به روش حل معکوس توابع تولید تحت شرایط تنش آبی با استفاده از سامانه نیاز آب
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیارینیازعلی ابراهیمی پاک 1 , علی عبدزادگوهری 2 , آرش تافته 3
1 - دانشیار، بخش تحقیقات مدیریت آب در مزرعه، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.
2 - بخش تحقیقات مدیریت آب در مزرعه، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.
3 - استادیار، بخش تحقیقات مدیریت آب در مزرعه، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.
کلید واژه: حل معکوس عددی, رقم الوند, نیاز آبی, تبخیر-تعرق,
چکیده مقاله :
زمینه و هدف: عوامل مختلفی در افزایش تولید محصول گندم مؤثر می باشند که یکی از مهم ترین آن ها، آب است. تعیین آب مصرفی واقعی گندم در مناطق خشک و نیمه خشک از اهمیتی خاص برخوردار بوده و استفاده اقتصادی از آب یک مسئله جدی و بسیار مهم برای کشاورزان و محققانی است که گندم را به صورت آبی کشت و تولید می کنند . فصل کشت گندم به دلیل تغییر الگوی انرژی موثر بر تبخیر-تعرق، اثر مستقیمی بر نیاز آبی آن دارد و به طور قطع در فصل زمستان، نیاز آبی کمتری نسبت به بهار و تابستان خواهد داشت. این پژوهش به منظور بررسی سامانه نیاز آب در تعیین مقدار واقعی آب آبیاری و عملکرد گیاه گندم بر اساس حل معکوس تابع تولید در شرایط تنش آبی برای گندم رقم الوند در استان قزوین انجام شد.روش پژوهش: این پژوهش در سال های زراعی 1396- 1398 در استان قزوین در زمینی به مساحت 600 متر مربع در ایستگاه تحقیقاتی اسماعیل آباد (49º 52' N, 36º15' E, 1285 MSL) انجام شد. طرح آزمایشی به صورت کرت های خرد شده و در قالب طرح بلوک های کامل تصادفی در سه تکرار بود. به طوری که عامل اصلی مدیریت آبیاری شامل تأمین نیاز آبی 20 (I1)، 40 (I2)، 60 (I3)، 80 (I4) و 100 درصد (I5) و تیمار فرعی شامل آبیاری تا پایان مرحله گلدهی (S1) و مرحله خمیری شدن دانه (S2) بود. سامانه نیاز آبی کشور که توسط موسسه تحقیقات خاک و آب کشور ارائه شده است، سامانه ای است برای تعیین نیاز آبی محصولات زراعی و باغی که توانایی برآورد و تعیین نیاز آبی، آب مصرفی و برنامهریزی آبیاری گیاهان را در سطح منطقه، شهرستان، حوضه آبریز، دشت دارد. یکی از نکات برجسته این سامانه، مکان محور بودن آن است و استفاده کننده در هر مکان با مراجعه به سامانه، نیازهای منطقهای خود را استخراج میکند و میتواند آب مصرفی برای الگوی کشت را تحت گزینههای مختلف کاربری به ذی نفعان بخش آب کشاورزی با قابلیت بهروزرسانی ارائه نماید.یافته ها: نتایج نشان داد که ریشه میانگین مربعات خطا در روش تافته، پاسکوئله و رئس به ترتیب با 122، 83 و 126 میلی متر در روز بود که در این میان، روش پاسکوئله نسبت به سایر روش ها، دارای برآورد بهتری بود. در روش پاسکوئله بهترین ریشه میانگین مربعات خطای نرمال با 18/0 درصد مشاهده شد. شاخص توافق یا سازگاری در روش تافته، پاسکوئله و رئس به ترتیب با 95/0، 98/0 و 95/0 درصد و ضریب کارایی مدل به ترتیب با 77/0، 91/0 و 73/0 بود. همچین نتایج آنالیز آماری نشان داد که مقادیر اندازه گیری و شبیه سازی شده به خط یک به یک نزدیک و ارتباط مناسبی دارند و مقادیر ضریب تبیین در سال های مورد مطالعه را 98/0 نشان داد. نتایج برآورد میزان تبخیر- تعرق گیاه گندم با استفاده از سیستم نیاز آب در دشت قزوین با روشهای تافته و همکاران. (2013)، پاسکوئله و همکاران. (2017) و رئس و همکاران، (98/0=R2) بالا بوده و ریشه میانگین مربعات خطا در روش های تافته، پاسکوئله و رئس به ترتیب 120، 83 و 126 میلی متر در روز بود که در این روش روش پاسکوئله برآورد بهتری نسبت به روشهای دیگر داشت.نتیجهگیری: به طور کلی و با توجه به نتایج آماری، تقریب خوبی بین داده های واقعی و استفاده از سیستم نیاز آب در تعیین میزان آب آبیاری در شرایط تنش آبی مشاهده شد که بیانگر ارزیابی مناسب سیستم نیاز آبی و توانایی شبیه سازی است. تابع عملکرد گندم در رابطه با تیمارهای مختلف آبیاری بود و این سیستم می تواند به عنوان ابزار مناسبی در برآورد نیاز آبی برای بهبود مدیریت آب در گندم استفاده شود.
Background and Aim: Different factors are effective in increasing wheat production, one of the most important of which is water. Determining the actual consumed water of wheat in arid and semi-arid regions is of particular importance and the economic use of water is a serious and very important issue for farmers and researchers who cultivate and produce wheat under irrigation. The season of wheat cultivation has a direct effect on its water requirement due to the change in the energy pattern affecting evapotranspiration, and it will definitely have a lower water requirement in winter than in spring and summer. Therefore, the present study was conducted in order to investigate the water requirement system in determining the actual amount of irrigation water and wheat plant yield based on the inverse solution of the production function under water stress conditions for Alvand variety wheat in Qazvin province.Method: The research was conducted in 2017-2019 crop years in Qazvin province on a land of 600 square meters in Esmailabad research station (49º 52' N, 36º 15' E, 1285 MSL). The experimental design was in the form of split plots and in the form of a randomized complete block design with three replications. So that the main factor of irrigation management includes providing water requirements of 20 (I1), 40 (I2), 60 (I3), 80 (I4) and 100 percent (I5) and secondary treatment includes irrigation until the end of the flowering stage (S1) and The pulping of the seed was (S2). The country's using NIAZAB system was provided by the Soil and Water Research Institute (SWRI). This system is designed to determine the water requirement of farmland and Orchard products, which has the ability to estimate and determine the water requirement, Consumed water and plants irrigation planning at the level of the region, city, catchment and plain. One of the prominent points of this system is its location-based nature, and the user can extract their regional needs by referring to the system and can allocate the water used for the cultivation pattern under different usage options to the beneficiaries of the agricultural water stakeholder with the ability to provide an update.Results: The results showed that the root mean square error in Tafteh, Pasquale and Raes methods was 122, 83 and 126 mm per day, respectively, and Pasquale method had a better estimation than other methods. In Pasquale's method, the best normalized root mean square error was observed with 0.18%. The index of agreement or consistency in Tafteh, Pasquale and Raes methods was 0.95, 0.98 and 0.95%, respectively, and the Coefficient of Efficiency of the model was 0.77, 0.91 and 0.73, respectively. The results of the statistical analysis showed that the measured and simulated values are close to the 1:1 line and have a good relationship, and the coefficient of determination values in the studied years showed 0.98. The results of estimation the amount of wheat plant evapotranspiration in the using NIAZAB system in the Qazvin plain with the methods of Tafteh et al. (2013), Pasquale et al. (2017) and Raes et al. (R2=0.98) were high and the root mean square error in Tafteh, Pasquale and Raes methods was 120, 83 and 126 mm per day, respectively, in which Pasquale's method had a better estimation than other methods.Conclusion In general and according to the statistical results, a good approximation was observed between the real data and the using NIAZAB system in determining the amount of irrigation water under water stress conditions, which indicates the appropriate evaluation of the water requirement system and the ability to simulate the wheat yield function in relation to different treatments. It was irrigation and this system can be used as a suitable tool in estimating water needs to improve water management in wheat.
Abdzad Gohari, A., Tafteh, A., & Ebrahimipak, N. (2022). Investigation of Water Requirement System in Determining the Actual Amount of Irrigation Water of Peanut Plant Based on Inverse Solution of Yield Function under Water Stress Conditions. Iranian Journal of Irrigation and Drainage, 3(16), 460-471. [in Persian]
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the (2012) revision.
Ebrahimipak, N., Tafteh, A., Egdarnejad, A., & Kapourchal, S. (2018). Determination of monthly evapotranspiration coefficients of winter wheat by different methods of estimating evapotranspiration and evaporation pan in Qazvin plain. Iranian Journal of Soil and Water Research, 8(4), 107-121. [in Persian]
Ebrahimipak, N.A., Tafteh, A., Abbasi, F., & Baghani, G. (2022). Estimation the actual amount of wheat irrigation water using the NIAZAB system and compare with the farm measurement. Iranian Journal of Soil and Water Research, Articles in Press. [in Persian]
Egdernezhad, A., EbrahimiPak, N. A., Tafteh, A., & Ahmadee, M. (2019). Canola Irrigation Scheduling using AquaCrop Model in Qazvin Plain. Water Management in Agriculture, 5(2), 53-64. [in Persian]
Ehsani, A., Arzani, H., Farahpur, M., & Jafari, M. (2012). Evapotranspiration Estimation Using Climatic Data, Plant Characteristics and Cropwat 8.0 Software (Case Study: Steppic Region of Markazi Province, Roodshore Station). Iranian journal of Range and Desert Research, 19(1), 1-16.
Emdad, M., Tafteh, A., & Ebrahimipak, N. (2022). Efficiency of Aquacrop Model in Simulating Yield of Quinoa in Different Deficit Irrigation Managements. Journal of Water and Soil, 36(3), 319-331. [in Persian]
FAO, 2018. FAOSTAT. Available online: http://faostat.fao.org/site/567/default.aspx# ancor.
Jafari najafabadi, M., Tafteh, A., & Ebrahimipak, N. (2022). Determining the water requirement and Applied water of bell pepper in the greenhouse and comparing it with the results of the water requirement system. Iranian Journal of Soil and Water Research, Articles in Press. [in Persian]
Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of the computer simulation model ARCWHEAT on wheat crops grown in New Zealand. Field Crops Research, 27: 337-350.
Kikhaei, F., & Ganji Khorram Del, N. (2016). Effect of Deficit Irrigation in Corrugation and Border Methods on Yield and Water Use Efficiency of Wheat. Hamoon. Water Research in Agriculture, 30(1), 1-11. [in Persian]
Liu, J., Zehnder, A.J. B., & Yang. H. (2008). Drops for crops: Modelling crop water productivity on a global scale. Global NEST Journal, 10(3): 295-300.
Lobell, D.B., Gourdji, S.M., (2012). The influence of climate change on global crop productivity. Plant Physiology, 160 (4), 1686-1697.
Mehtadi, M., Al-Baji, M., & Borumand Nesab, S. (2015). Investigating the irrigation water use efficiency of wheat crop in some irrigation and drainage networks of Khuzestan province. Irrigation science and engineering. 12(1), 239-248. [in Persian]
Nakhjavani Moghadam, M.M., Hero, B., & Zarei, Q. (2017). Wheat Water Productivity Analysis under Different Irrigation Management Practices in Some Regions of Iran. Journal of Water Research in Agriculture, 31(1). 43-57. [in Persian]
Raes, D. (2004). Budjet: A soil water and salt balance model. Reference Manual. Version 6.0 (http://www.iupware.be and select downloads and next software. last updated June 2004).
Raes, D., Steduto, P., Hsiao, T.C., & Fereres, E. (2017). Reference manual AquaCrop. FAO. Land and Water Division, Rome, Italy. 25p.
Rahimi, Z., Hosseinpanahi, F., & Siosemardeh, A. (2019). Evaluation of yield, radiation and water use efficiency of drought resistant and susceptible wheat cultivars under different irrigation levels. Journal of Wheat Research, 2(1), 19-34. [in Persian]
Rahimian, M., Gholami, H., Ranjbar, GH., Beyrami, H., Moravvej-ol-Ahkami, B., Karimi, M., & Cheraghi, S.A. (2022). Interaction of Applied Water Volume and Irrigation Water Salinity on Wheat Yield in Arid Regions (Case study: Yazd). Journal of Water and Sustainable Development, 8(4), 43-50. [in Persian]
Rezaei rad, H., Hoshmand, A., & Dost Mohammadi, M. (2012). Investigating the water productivity of three crops: barley, wheat and alfalfa in Isfahan province (by city). Islamic Azad University, Khorasgan Branch, Faculty of Agriculture. 20 p. [in Persian]
Shamsi, K., petrosyan, M., Noor-mohammadi, G. Haghparast, A., Kobraee, S., & Rasekhi, B. (2011). Differential agronomic responses of bread wheat cultivars to drought stress in the west of Iran. African Journal of Biotechnology, 10 (14), 2708-2715. [in Persian]
Shiferaw, B., Smale, M., Braun, H.-J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Security, 5 (3), 291-317.
Singh, R., Van Dam., J.C. & Feddes., R.A. (2006). Water productivity analysis of irrigated crops in Sirsa District. Indian Agricutural Water Management, 82: 253-278.
Tafteh, A., Ebrahimipak. N. A., Babazadeh, H. and Kaveh, F. 2014.Determine yield response factors of important crops by different production functions in qazvin plain. Ecology, Environment and Conservation 20(2), 415-422.
Tafteh, A., Nakhjavani Moghadam, T., Egdernezhad, A., & Saloome Sepehri, S. (2020). Evaluation Of Production Functions In Estimating Two Varieties of Corn Yield with Native Yield Response Factor In The Iran. Iranian Journal of Soil and Water Research, 51(10), 2519-2529. [in Persian]
Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of American Meteorology Society, 63: 1309-1313.
Zulkiffal, M., Ahsan, A., Ahmed, J., Musa, M., Kanwal, A., Saleem, M., Gulnaz, S. (2021). Heat and Drought Stresses in Wheat (Triticum aestivum L.): Substantial Yield Losses, Practical Achievements, Improvement Approaches and Adaptive, Plant Stress Physiology. 25p.
Zwart, S.J. & Bastiaanssen, W.G.M. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2):115-133.