عنوان: بررسی کانی شناسی رس خاک در مواد مادری مختلف در حوضه جنوبی دریاچه ارومیه در شهرستان میاندوآب
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریالهام حبیبی 1 , راضیه لک 2 , حسین ترابی گلسفیدی 3 , شهلا محمودی 4 , حمید رضا ممتاز 5
1 - دانشجوی دکتری پیدایش، ردهبندی و ارزیابی خاک، گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشیار پژوهشکده علوم زمین سازمان زمینشناسی و اکتشافات معدنی کشور
3 - گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شاهد تهران، ایران
4 - خاکشناسی، دانشگاه علوم تحقیقات تهران
5 - 5. دانشیار گروه خاکشناسی دانشگاه ارومیه، ایران
کلید واژه: ایلایت, پالیگورسکایت, اسمکتیت, خاکرُخ, کائولنیت,
چکیده مقاله :
با توجه به بحران زیستمحیطی دو دهه اخیر و خشک شدن بخشهایی از دریاچه ارومیه و تأثیرگذاری آن بر زمینهای کشاورزی اطراف، این مطالعه با هدف شناسایی کانیها در خاکهای متاثر از مواد مادری مختلف به منظور درک ارتباط متقابل خاک با مواد مادری و پیش بینی روند تغییرات آنها انجام شد. در این پژوهش 26 خاکرُخ بر روی مواد مادری مختلف حفر و تشریح گردید واز بین آنها 13 خاکرُخ شاهد مورد بررسی دقیق قرار گرفتند. نتایج کانیشناسی رس حاکی از حضور کانیهای رسی ایلایت، اسمکتیت، کلریت، کائولینیت، ورمیکولیت و پالیگورسکیت در این منطقه میباشد. حضور پالیگورسکیت در خاکرخها دارای دو منشا پدوژنیک و به ارث رسیده از مواد مادری میباشد. همچنین کانیهای کائولینیت و کلریت به دلیل عدم شرایط لازم برای تشکیل پدوژنیک، به ارث رسیده از مواد مادری است. ایلایت در بیشتر خاکها منشأ موروثی داشته و درخاکرخهایی که کاربری زراعی داشتند، جذب پتاسیم توسط کانیهای انبساط پذیر انجامشده و در سطح خاک تغییر شکل یافته و ایلایت را تشکیل دادند. منشاء اسمکتیت نیز در برخی از خاکهای این منطقه پدوژنیکی بوده و احتمالاً از هوازدگی ایلیت به وجود آمده است و در برخی دیگر توارثی است، چون در سنگ بستر آنها نیز مشاهده شده است. ورمیکولیتهای موجود در این منطقه نیز اغلب منشأ پدوژنیکی دارند و حاصل از هوا دیدگی میکا و کلریت میباشند. نتایج تحقیق حاکی از این است که مواد مادری متفاوت، تاثیر زیادی در خصوصیات فیزیکوشیمیایی و مقدار نسبی کانیهای خاک در این منطقه داشته است.
According to the environmental crisis of the last two decades and the drying of some parts of the Urmia Lake and its impact on the surrounding agricultural lands, this study aimed to identify minerals in soils in different parent materials in order to understand the interaction of soils with parent materials and to predict their change trends. Twenty six soil profiles were described on different parent material and thirteen were selected as index profiles and studied precisely. Clay mineralogy results indicated the presence of clay minerals of illite, smectite, chlorite, kaolinite, vermiculite and palygorskite in this area.The presence of palygorskite in the profiles had two origins, pedogenic and inherited from parent material. Also, kaolinite and chlorite minerals are inherited from parent materials due to the lack of conditions for pedogenic formation. Illite was inherited in most soils and in profiles with agricultural use, potassium adsorption was carried out by expanded minerals and formed the illite on the soil surface. The origin of smectite was also pedogenic in some soils of this region, probably due to illite weathering, and in others it was hereditarym, Because they have also been observed in their parent rocks.Vermiculites in this area were also often of pedogenic origin and are derived from mica and chlorite. The results showed that different parent materials have a high effect on soil physicochemical and the amount of minerals in this area.
ابطحی، ع. و صلحی، م. 1371. تأثیر پستی و بلندی و زمان در تشکیل خاک با مواد مادری خیلی آهکی تحت شرایط نیمه خشک منطقه باجگاه ایران. گزیده خلاصه مقالات سومین کنگره علوم خاک ایران. شهریور، دانشگاه تهران، 24-1.
اوجی، م. ر. و باقرنژاد، م. 1386. مطالعه خصوصیات فیزیکوشیمیایی، مورفولوژیکی و کانیشناسی برخی از خاکهای جلگههای مرتفع استان فارس، ششمین کنگره علوم خاک ایران، دانشگاه فردوسی مشهد.
اولیایی، خ م. 1388. کانی شناسی، میکرومورفولوژی و تکامل خاکهای مناطق مختلف اقلیمی استان کهگیلویه و بویراحمد، رساله دکترا. دانشگاه شیراز.
خرمالی، ف، ابطحی، ع. و تازیکه، ح. 1391. کانیهای رسی (ویژگیها و شناسایی). انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان. 315ص.
سنجری، ص. و برومند، ن. 1393. مطالعه کانی شناسی رسی خاکهای واقع بر سطوح ژئومرفیک در منطقه ساردوئیه-جیرفت، مجله پژوهشهای خاک(علوم خاک و آب)/الف، 28(1)، 219-209.
نیستانی، م. و فرپور، م. 1393. بررسی نحوه تشکیل، کانیشناسی رس و میکرومورفولوژی خاکهای گچی – نمکی پلایای خیرآباد سیرجان. دو فصلنامه علمی-پژوهشی خشک بوم، 4(1)، بهار و تابستان، 78-65.
Akihiro, I. Kazahito, M. and Seiichi. O. 2002. Chemical properties and classification of Japanese brown forest soils derived from various parent materials. In: Proceeding of the 17th Congress of Soil Science. August 14-21, Bangkok, Thailand. Symposium, No. 40, Paper No. 468.
Allen, B. L. and Hajek, B. F. 1989. An introduction to soil mineralogy. In: Dixon, J. B. and S. B. Weed. (Eds.), Minerals in Soil Environments, 2nd ed. SSSA Book Ser. Madison, WI. pp. 199-278.
Barn hisel, R. I. and Bertsch, P. M. 1989. Chlorite and hydroxy interlayered vermiculite and smectite.Pp 729-788. In; Minerals in soil Environment (J.B. Dixon & S.B Weed, editors, Soil Sci. Soc. Am. J., Madison, Wisconsin; 729-788.
Barros, G. M., Santos, J.C.B. Júnior, V. S., delarmelinda, E. A., Filho, J.C., and Cámara E. R. 2018. Association between parent materials and soils attributes along different geological environments in western Pará, Brazil, Acta Amaz, Vol. 48, no 3. https://doi.org/10.1590/1809-4392201703322.
Borchardt, G.1989. Smectites. In: Dixon, J. B. and S. B. Weed (Eds.), Minerals in Soil Environments, 2nd ed. SSSA Book Ser., vol: 1. SSSA, Madison, WI, pp. 675– 718.
Brady, N.C. 1990. The nature and properties of soils. Macmillian. New York. P 621.
Buol, S. W. Southard, R. J. Graham, R. C. and McDaniel, P. A. 2011. Soil Genesis and classification (6th ed). New York: Wiley.
Buol, S. W. Southard, R.J. Graham, R.C. and McDaniel, P.A. 2003. Soil Genesis and classification. 5nd ed., Iowa State Press. 360p
Buol, S.W.F.O.Hole, and R.J.McCracken.1989. Soil genesis and classification.The Iowa state University Press.Am.third edition, 446p.
Coude-Gausser, C. (1987). Observation au MEB de fibers de palygorskitetransortee engrains par le vent. In: Federoff, N., Bresson, L. M., Courty, M. A., (Eds.), Micromorphologie des sols. Association francaise pour Etude du sol, Paris pp. 199-205
Dixon, J.B. 1989. Kaolin and serpentine group minerals. Minerals in Soil Environment (J.B. Dixon & S.B Weed, editors). Soil Science Society of America, Madison, Wisconsin, USA. pp. 467-525.
Dixon, J.B., and S.B.Weed. 1992. Properties of intergradient chlorite expansible layer silicates of soils. Soil Sci.Am.Proc. 26:258-362
Elprince, A. M. Mashhad, A. S. and AbaHussein, M. M. 1997. The occurrence of pedogenic palygorskite (attpulgite) in soils of Saudi Arabia. Soil Science, 128, 211-218.
Fanning D. S. 1989. Soil morphology, genesis and classification, John Wiley and Sons, New York, 369 P.
Gee, G.W. and Bauder, J. W. 1986. Physical and mineralogical methods, second Edition 383-441. In: Method of soil Analysis, Part I.
Gremillion, R. L. 1965. The Origin of Attapulgite in the Miocene Strata of Florida and Georgia. Ph.D. Thesis, Florida State University, Tallahassee, Florida.
Grim R.E. 1962. Applied clay mineralogy: McGraw Hill, New York, 422 P.
Islam A.K.M.E. & Lotse E.G. 1986. Quantitative mineralogical analysis of some Bangladesh soils with X- ray, ion exchange and selective dissolution techniques. Clay Miner. 2
Jackson, M. L. 1975. Soil Chemical Analysis-advanced Course. Univ. Of Wisonsin Collegeof Agric., Dept of Soils Sci., Madison, WI.
Jolicoeur S. Ilde Fons P. and Bouchard M. 2000. Kaolinite and gibbsite weathering of biotite within saprolites and soils of central Virginia. Soil Sci. Soc. Am. J. 64: 1118-1129.
Khormali F. Abtahi A. Mahmoodi S. and Stoops G. 2003. Argillic horizon development in calcareous soils of arid and semi-arid regions of Southern Iran. Catena 776: 1-29.
Khormali F., and Abtahi A. 2001. Soil genesis and mineralogy of three selected regions of Fars, Bushehr and Khuzestan provinces of Iran, formed under highly calcareous conditions. Iran agricultural Research 20: 67-82.
Khormali, F. & Abtahi, A. 2003- Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, 38, 511-527.
Kittrik, J.A., and Hope. E.W. 1963. A procedure for the particle size separation of soil for X-ray diffraction analysis. Soil Sci. Soc. 96: 312-325.
McLean, E.D. 1982. Soil pH and lime requirement. In: A.L. Page (Editor), Methods of soil analysis. Part 2. 2nd edition. Agronomy Monograph, Vol 9. ASA and SSSA, Madison, WI, 199-224.
Mehra, O. P. and Jackson. M. L. 1960. Iron oxide removal from soils and clays by a dithionite citrate system with sodium bicarbonate. Clays and Clay Minerals. 27: 317-327.
Moazallahi, M., and M.H. Farpoor. 2012. Soil genesis and clay mineralogy along the xeric–aridic climotoposequence, south central Iran. Journal of Agricultural Science and Technology, Tarbiat Modarres, Tehran, Iran, 14: 683-696.
Nael M. Khademi H, Jalalian A and Sotohian F. (2014). Soil Parent material relationship in forest ecosystem of western Alborz: Clay mineralogy. Journal of Water and Soil Conservation, Vol. 21(3).
Nelson, D. W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In A.L. Page et al. (ed). Methods of soil analysis. Part 2. Agron. Monogr. 9. 2nd ed. ASA and SSSA, Madison, WI. PP: 539-579.
Nelson, RE., 1986. Carbonate and gypsum. Pp. 181-197. In: A. L. Page et al (Ed). Methods of soil Analysis.
Nettleton, W D., Nelson, R.E. and Flach, K.W., 1973. Formation of mica in surface horizons of dryland soils. Soil Sci. Soc.Amer. Proc., 37: 473-478.
Paquet, H. & Millot, C. (1972). Geochemical evolution of clay minerals in the weathered products and soils of Mediterranean climates. In: Procmt. Clay Conference Madrid, Spain, pp. 199-202.
Raheb A.R. Haidari, A. and Mahmoodi, Sh. 2017. Geochemical properties of some soils developed on basalts rocks of North-west Iran. Iranian journal of Soil and Water Research, Vol 47, pp. 807-818.
Rahman Salari, K., Delavar, M. A., Esfandyari. M., and Pazira. E. 2019. Morphological, physical, and clay mineralogy of calcareous and gypsiferous soils in North of Loresta, Iran. Canadian Journal of Soil science, 99(4): 485-494, https://doi.org/10.1139/cjss-2018-0141
Rhoades, J.D. 1982. Cation exchangeable capacity. In: Page, A. L., Miller, R.H., Keeney, D.R. (Eds.), Methods of soil Analysis: Part2. Chemical and MicrobiologicalProperties. Agronomy Monograph, Vol. 9. ASA and SSSA, Madison, WI, 149-157.
Sandler A. Meunier A. velde, B. 2015. Mineralogical and chemical variability of mountain red/brown Mediterranean soils. Geoderma, 239-240: 156-167.
Sang, P.N., Liu Z., Zhao Y., Zhao X., Dong pha P and Long H.V. 2018. Chemical weathering in centeral Vietnam from clay mineralogy and major-element geochemistry of sedimentary rocks and river sediments. Heliyon, Vol 4, issue 7.
Schenk, H.J. and Jackson, R.B. 2002. The global biogeography of roots. Ecol. Monogr. 72: 311-328.
Smith, D. W. 2014. Soil survey staff: keys to soil taxonomy. Natural Resources Conservation Service: Washington, DC, USA.
Sumner, M.E. L. de Ramos, & U. Kukier. 1994. Modifiction to compulsive exchange method for determining cation exchange capacity of soils, Comm. Soil Sci. Plant Anal, 25,567-572.
Thanachit S. Suddhiprakarn A., Kheoruenromne I., and Gilkes J.R. 2006. The geochemistry of soils on a catena on basalt at Khon Buri, northeast Thailand. Geoderma, 135: 81–96.
Wilson, M. J. 1999. The origin and formation of clay minerals in soils: past, present and future perspectives.
_||_