تأثیر کوتاه مدت کمپوست بستر قارچ بر مقاومت فروروی، توزیع اندازه خاکدانهها و پایداری آنها در خاکهایی با بافت متفاوت
محورهای موضوعی : مدیریت بهینه منابع آب و خاکچیمن مهدیزاده 1 , حسین بیات 2
1 - دانشجوی دکتری گروه علوم و مهندسی خاک، دانشگاه بوعلی سینا همدان.
2 - دانشیار گروه علوم و مهندسی خاک، دانشگاه بوعلی سینا همدان.
کلید واژه: کمپوست بستر قارچ, میانگین وزنی قطر خاکدانهها, مقاومت فروروی, ساختمان خاک, بافت خاک,
چکیده مقاله :
سابقه و هدف: در میان روشهای مختلفی که برای حل مشکلات تراکم و به تبع آن افزایش مقاومت فروروی و کاهش حاصلخیزی خاک اعمال میشود، افزودن مواد آلی به خاک از جایگاه مهمی برخوردار است. کمپوست بستر قارچ خوراکی دارای بسیاری از ویژگیهای مورد نیاز برای افزایش محصولات کشاورزی ارگانیک و مدیریت محیط زیست است. با توجه به اینکه مواد تشکیل دهنده کمپوست بستر قارچ (شامل خاک سنگین، خاک سبک، خاک ریشه، کاه و کلش گندم، سنگ آهک و کود مرغی) متفاوت از انواع دیگر مواد آلی می باشد، انجام تحقیقات جدید برای بررسی تأثیر آن بر ویژگی های فیزیکی و شیمیایی خاک ضروری است. علیرغم اینکه بافتهای مختلف رفتارهای متفاوتی دارند، با این وجود تأثیر کمپوست بستر قارچ بر مقاومت فروروی، جرم خاکدانه های ریز و درشت در بافتهای متفاوت کمتر مورد توجه قرار گرفته است. بنابراین هدف از انجام این تحقیق بررسی تأثیر کوتاه مدت کمپوست بستر قارچ بر مقاومت فروروی، میانگین وزنی قطر خاکدانه ها، توزیع اندازه خاکدانهها و ماده آلی در سه نوع خاک بود.مواد و روش: آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار انجام شد. فاکتورها شامل بافت خاک در سه سطح (لوم شنی، لوم و رسی) و درصد وزنی کمپوست بستر قارچ در سه سطح (صفر، 3 و 6 درصد) بود. تیمارها اعمال و نمونهها به مدت 120 روز در دوره انکوباسیون قرار گرفتند و در این دوره با آب شهری مرتب هر ماه 1 بار اشباع (اشباع شدن از بالا) و خشک شدند تا شرایط مزرعه شبیهسازی گردد. در پایان دوره انکوباسیون، نمونهبرداری از ظروف به صورت دستخورده و دست نخورده توسط سیلندر های استیل با قطر 5 سانتی متر و ارتفاع 5/4 سانتی متر انجام شد. اندازه گیری مقاومت فروروی توسط فروسنج میکرو روی نمونه های دستنخورده در مکش ماتریک 3/0 بار صورت گرفت. ماده آلی، میانگین وزنی قطر خاکدانه ها و توزیع اندازه خاکدانهها اندازهگیری شد.یافته ها: نتایج نشان داد که استفاده از سطح 6 درصد کمپوست بستر قارچ در خاک لوم شنی به علت برهمکنش بین ترکیبات موجود در کمپوست و ایجاد خاکدانه های پایدار موجب کاهش مقاومت فروروی نسبت به سطح 3 درصد و شاهد گردید. همپنین نتایج نشان داد که بیش ترین مقدار تغییرات در ماده آلی و میانگین وزنی قطر خاکدانه ها در سطح 6 درصد، در بافت لوم مشاهده شد. هم چنین جرم خاکدانه ها در کلاس های 8-4 و 4-2 میلی متر، در خاک های مورد مطالعه به ترتیب لوم بیشتر از لوم شنی و لوم شنی بیشتر از رسی بود، که تفاوت همه آن ها معنی دار شد. به کار بردن کمپوست بستر قارچ در سطح 3 و 6 درصد در بافت لومی موجب افزایش معنی دار جرم خاکدانه ها ی 5-1/0 و 5/0-25/0 میلی متر نسبت به شاهد شد. خاکدانه های مذکور در خاک لوم شنی و رسی در سطوح مختلف تفاوت معنی داری را نشان ندادند. با افزایش سطوح کاربرد کمپوست بستر قارچ در خاکهای مختلف، ماده آلی در دامنه 27 تا 66 درصد، میانگین وزنی قطر خاکدانه ها در دامنه 16تا 5/34 درصد، جرم خاکدانه های 1-5/0 میلی متر در دامنه 4 تا 5/117 درصد و جرم خاکدانه های 5/0-25/0 میلی متر در دامنه 4 تا 170 درصد افزایش یافت. نتیجه گیری: این کمپوست متفاوت از سایر اصلاح کننده ها می باشد و می تواند در بافت های متفاوت مکانیسم تاثیر متفاوتی داشته باشد. به این صورت که افزودن همزمان آهک، رس و ماده آلی (از طریق کمپوست) به خاک های با بافت متفاوت باعث بروز واکنش های تبادل کاتیونی در خاک می شود. آهک به عنوان یکی از اصلی ترین افزودنی هایی که توانایی بهبود رفتار خاک های ریز دانه را دارد از دیر باز مورد توجه قرار داشته است. به این صورت که در خاک رس و لوم برهمکنش بین آهک و رس با ماده آلی با تشکیل پل های کاتیونی نقش مهمی به عنوان عوامل تجمع خاک ایفا می کنند. در خاک لوم شنی به علت کم بودن ماده آلی و ساختمان ضعیف، استفاده از آهک و گچ مستقیما مقاومت خاک را بهبود می دهد. لذا استفاده از کمپوست بستر قارچ در اراضی کشاورزی جهت اصلاح ساختمان خاک مفید است.
Background and objectives: Adding organic matter to the soil is an important method to solve the problem of compaction and consequently penetration resistance and fertility reduction. Mushroom substrate compost (MSC) has many properties that are required for growing organic crops and environmental management. Considering that the ingredients of mushroom substrate compost (including heavy soil, light soil, root soil, wheat straw and stubble, limestone and chicken manure) are different from other types of organic materials, it is necessary to carry out new research to investigate its effect on the physico-chemical properties of the soil. Although different textures behave differently but, the effect of MSC on the penetration resistance and aggregates size distribution in different soils, has not been studied, so far. Therefore, the purpose of this study was to investigate the short-term effect of MSC on the penetration resistance, mean weight diameter of aggregates, aggregates size distribution and organic matter content in three soil types. Materials and methods: A factorial experiment was conducted in a completely randomized design with three replications. Factors consist Soil texture at three levels (sandy loam, loam and clay) was the first factor, and MSC at three levels (0, 3 and 6% W/W) was the second factor. After treatment of the soils, samples were then incubated for 120 days, and they were saturated and dried with urban water, regularly, once a month (saturated from above), during this period. At the end of the incubation period, disturbed and undisturbed soil samples were taken by 5 cm in diameter and 4.5 cm in height steal cylinders. The penetration resistance was measured by a micro-penetrometer on the core samples at the matric suction of 0.3 bar. Organic matter, mean weight diameter of aggregates and aggregates size distribution were measured. Results: The results showed that the use of 6% level mushroom substrate compost in the sandy loam soil caused a decrease in the penetration resistance compared to the level of 3% and the control, due to the interaction between the compounds in the compost and the creation of stable soil aggregates. Also, the results showed that highest amount of organic matter and mean weight diameter of aggregates at 6% level of MSC was found in loam texture. Also, the order of the mass of aggregates in classes 4-8 and 2-4 mm, was in loam> sandy loam> clay, with significant differences between the textures. Application of MSC at 3 and 6% levels in the loam texture significantly increased the mass of aggregates of 0.25 – 0.5 and 0.5-1 mm in comparison with control. These aggregates did not show significant differences in sandy loam and clay soils at different application levels of the MSC. Organic matter, mean weight diameter of aggregates, mass of aggregates of 0.5 to 1, and 0.25 to 0.5 mm increased in the range of 27 to 66%, 16 to 34.5%, 4 to 117.5% and 4 to 170%, respectively, by increasing MSC application levels at different soils. Conclusion: This compost is different from other modifiers and can have different effective mechanisms in different textures. The simultaneous addition of lime, clay and organic matter (through compost) to soils with different textures causes cation exchange reactions in the soil. Lime as one of the main additives that has the ability to improve the behavior of fine-grained soils has been noticed for a long time. In this way, in clay and loam soils, the interaction between lime and clay with organic matter plays an important role as soil accumulation factors by forming cationic bridges. The use of lime and gypsum directly improve soil resistance. Therefore, the use of mushroom substrate compost in agricultural lands is useful for improving the soil structure.
Abrar, M. M., Xu, M., Shah, S. A. A., Aslam, M. W., Aziz, T., Mustafa, A., & Ma, X. (2020). Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Science of the Total Environment, 723, 138181.
Adugna, G. (2016). A review on impact of compost on soil properties, water use and crop productivity. Academic Research Journal of Agricultural Science and Research, 4(3), 93-104.
Aksakal, E. L., Sari, S., & Angin, I. (2015). Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation & Development, 27(4), 983-995.
Almajmaie, A., Hardie, M., Doyle, R., Birch, C., & Acuna, T. (2017). Influence of soil properties on the aggregate stability of cultivated sandy clay loams. Journal of Soils and Sediments, 17(3), 800-809.
Angin, I., Aksakal, E. L., Oztas, T., & Hanay, A. (2013). Effects of municipal solid waste compost (MSWC) application on certain physical properties of soils subjected to freeze–thaw. Soil and Tillage Research, 130, 58-61.
Behnam, H., Farrokhian Firouzi, A. & Moezzi, A. A. 2016. Effect of sugarcane bagasse biochar and compost on some soil mechanical properties. Journal of Water and Soil Conservation. 23:4. 235-250. (In Persian)
Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1-2), 3-22.
Byrd, C. W., & Cassel, D. K. (1980). The effect of sand content upon cone index and selected physical properties. Soil Science, 129(4), 197-204.
Cañasveras, J. C., Barrón, V., Del Campillo, M. C., Torrent, J., & Gómez, J. A. (2010). Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158(1-2), 78-84.
Carrizo, M. E., Alesso, C. A., Cosentino, D., & Imhoff, S. (2015). Aggregation agents and structural stability in soils with different texture and organic carbon contents. Scientia Agricola, 72, 75-82.
Ekwue, E. I. (1990). Organic-matter effects on soil strength properties. Soil and Tillage Research, 16(3), 289-297. doi: 10.1016/0167-1987(90)90102-J
Ghosh, A., Bhattacharyya, R., Meena, M. C., Dwivedi, B. S., Singh, G., Agnihotri, R., and Sharma, C. 2018. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil and Tillage Research. 177: 134-144.
He, Y., Xu, C., Gu, F., Wang, Y., & Chen, J. (2018). Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization. Soil and Tillage Research, 184, 281-290.
Iqbal, I. (2018). Effect of sugarcane litter compost on soil compaction. International Journal of Agriculture System, 6(1), 35-44.
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems & Environment, 148, 22-28.
Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In ‘Methods of soil analysis, Part 1: Physical and mineralogical methods'.(Ed. A. Klute). Soil Science Society of America: Madison. Wisconsin, USA. 425–442.
Khosravi, A., & Moosavi, A. (2017). The effect of organic acids on wet and dry cycles on stability and size distribution of aggregates in a calcareous soil, Journal of Soil Research (Soil and Water Sciences). 31(2), 264-277. (In Farsi).
Li Y, Hu S, Chen J, Müller K, Li Y, Fu W, Wang H. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissionsa review. Journal of Soils and Sediments, 18(2): 546-563. doi:10.1007/s11368-017-1906-y
Lipiec, J., Usowicz, B., Kłopotek, J., Turski, M., & Frąc, M. (2021). Effects of Application of Recycled Chicken Manure and Spent Mushroom Substrate on Organic Matter, Acidity, and Hydraulic Properties of Sandy Soils. Materials, 14(14), 4036.
Lou, Z., Sun, Y., Bian, S., Baig, S. A., Hu, B., & Xu, X. (2017a). Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere, 169, 23-31.
Lou, Z., Sun, Y., Zhou, X., Baig, S. A., Hu, B., & Xu, X. (2017b). Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma, 307, 30-37.
Medina, E., Paredes, C., Bustamante, M. A., Moral, R., & Moreno-Caselles, J. (2012). Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma, 173, 152-161.
Molina, N. C., Caceres, M. R., & Pietroboni, A. M. (2001). Factors affecting aggregate stability and water dispersible clay of recently cultivated semiarid soils of Argentina. Arid Land Research and Management, 15(1), 77-87.
Mustafa, A., Minggang, X., Shah, S. A. A., Abrar, M. M., Nan, S., Baoren, W., & Núñez-Delgado, A. (2020). Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management, 270, 110894.
Negiş, H., Şeker, C., Gümüş, I., Manirakiza, N., & Mücevher, O. (2020). Effects of biochar and compost applications on penetration resistance and physical quality of a sandy clay loam soil. Communications in Soil Science and Plant Analysis, 51(1), 38-44. doi: 10.1080/00103624.2019.1695819
Novotná, J., & Badalíková, B. (2018). The soil structure changes under varying compost dosage. Agriculture/Pol'nohospodárstvo, 64(4), 143–148.
Okunade, D. A., Raphael, O. D., Adesina, A. M. & Adekalu, K. O. (2020). "Compaction characteristics and penetration resistance of poultry-litter-amended agricultural soils." In IOP Conference Series: Earth and Environmental Science, 445(1), 012025.
Onal, M., & Topcuoglu, K. B. (2012). The effect of spent mushroom compost on the dry matter and mineral content of pepper (Piper anagram) grown in greenhouse. Available online at: konal@akdeniz.edu.tr.
Opara, C. C. (2009). Soil microaggregates stability under different land use types in southeastern Nigeria. Catena, 79(2), 103-112.
Ozlu, E., & Kumar, S. (2018). Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long‐term annual manure and inorganic fertilizer. Soil Science Society of America Journal, 82(5), 1243-1251
Puppala, A. J, Acar, Y.B, &Tumay, M. T. (1995). Cone penetration in very weakly cemented sand . Journal of Geotechnical Engineering. 121(8): 589-600. doi: 10.1061/(ASCE)0733-9410(1995)121:8(589)
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122-137.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21-33.
Robin, P., Morel, C., Vial, F., Landrain, B., Toudic, A., Li, Y., & Akkal-Corfini, N. (2018). Effect of three types of exogenous organic carbon on soil organic matter and physical properties of a sandy technosol. Sustainability, 10(4), 1146.
Sayara, T., Basheer-Salimia, R., Hawamde, F., & Sánchez, A. (2020). Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy, 10(11), 1838.
Shahgholi, G., & JANATKHAH, J. (2018). Investigation of the effects of organic matter application on soil compaction. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 28(2), 175-185. doi: 10.29133/yyutbd.348036
Stock, O., & Downes, N. K. (2008). Effects of additions of organic matter on the penetration resistance of glacial till for the entire water tension range. Soil and Tillage Research, 99(2), 191-201. doi: 10.1016/j.still.2008.02.002
Suess, A., & Curtis, J. (2006). Report: Value-added strategies for spent mushroom substrate in BC, prepared for British Columbia Mushroom Industry, 101 pp. Br. Columbia Minist. Agric. Lands., British Columbia, Canada.
Ternan, J. L., Elmes, A., Williams, A. G., & Hartley, R. (1996). Aggregate stability of soils in central Spain and the role of land management. Earth Surface Processes and Landforms, 21(2), 181-193.
Utomo, W. H., & Dexter, A. R. (1982). Changes in soil aggregate water stability induced by wetting and drying cycles in non‐saturated soil. Journal of Soil Science, 33(4), 623-637.
Vahabi, F., Mir Seyed Hosseini, H.,&Sharafa. (2011). Investigation of the effect of spent mushroom compost (smc) application on some chemical properties. Bushehr. Journal of Soil Research and Soil and Water Sciences. 25: 1. 49-60. (In Persian).
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wu, J., & Brookes, P. C. (2005). The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology and Biochemistry, 37(3), 507-515.
Xin, X., Zhang, J., Zhu, A., & Zhang, C. (2016). Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil and Tillage Research, 156, 166-172.
Yoder, R. E. (1936). A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. 1. Agronomy J. 28: 5. 337-351.
Zamani, P. 2011. Statistical designs in animal sciences. Bu-Ali Sina Univ. Press, 668p. (In Persian)
Zheng, J. Y., Zhao, J. S., Shi, Z. H., & Wang, L. (2021). Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agriculture, Ecosystems & Environment, 309, 107254.