اثر تاریخهای مختلف کشت و تغییر اقلیم بر تبخیر و تعرق گندم بهاره دشت قزوین (2021-2100)
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریفاطمه برزو 1 , هادی رمضانی اعتدالی 2 , عباس کاویانی 3
1 - دانشجوی کارشناسی ارشد، گروه علوم و مهندسی آّب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
2 - دانشیار، گروه علوم و مهندسی آّب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی)ره(، قزوین، ایران.
3 - دانشیار، گروه علوم و مهندسی آّب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بینالمللی امام خمینی)ره(، قزوین، ایران.
کلید واژه: AquaCrop, LARS-WG, پایگاه اطلاعاتی DKRZ,
چکیده مقاله :
زمینه و هدف: پیش بینی تاثیرات تغییرات اقلیمی بر تولیدات کشاورزی در دورههای آتی به منظور تامین امنیت غذایی گیاه استراتژیک گندم که در معاهدات بین المللی نقش اساسی دارد، امری ضروری است. مدلهای مولد داده های مصنوعی آب و هوایی مانند مدلهای معتبرGCM ، به منظور بررسی اثرات پدیده تغییر اقلیم بر سیستمهای مختلف استفاده میشوند و قادرند پارامترهای اقلیمی را برای یک دوره طولانی مدت با استفاده از سناریوهای تایید شده هیات بین دولتی تغییر اقلیممدلسازی نمایند. در پژوهش حاضر، دو منبع اطلاعاتی LARS-WG و DKRZ در تولید دادههای تغییر اقلیم دشت قزوین در بازه زمانی 2021-2100 استفاده شد سپس مقادیر تبخیر-تعرق واقعی گندم بهاره رقم پارسی به وسیله مدل Aquacrop در تاریخهای کشت متفاوت محاسبه و میزان تغییرات آنها نسبت به دوره پایه بررسی شد.روش پژوهش: در پژوهش حاضر، از داده های حاصل از پایگاه اطلاعاتی تحت وب DKRZ و مدلLARS-WG ، برای محاسبه سه متغیر دمای کمینه، دمای بیشینه و بارش، مربوط به ایستگاه همدیدی قزوین و پنج مدل گردش عمومی جو گزارش پنجم IPCC (EC-EARTH, GFDL-CM3, HadGEM2-ES, MIROC5, MPI-ESM-MR) تحت دو سناریو انتشار 5/4و 5/8 در دورهای آتی (2021-2040، 2041-2060، 2061-2080، 2081-2100) استفاده شد. با استفاده از داده های به دست آمده و بهکارگیری مدل Aquacrop، مقدار تبخیر-تعرق واقعی گندم بهاره در 5 تاریخ کشت متفاوت (15 بهمن، 1 اسفند، 15 اسفند، 1 فروردین و 15 فروردین) محاسبه و میزان تغییرات آنها نسبت به دوره پایه بررسی شد و تاریخی که اگر کشت در آن صورت گیرد منجر به بیشترین تبخیر-تعرق واقعی و کمترین تبخیر-تعرق واقعی میشود؛ معرفی شده است.یافته ها: مشاهدات نشان می دهد با کشت در تاریخ 15 بهمن و 1 اسفند تحت شرایط اقلیمی حاصل از مدل LARS-WG در سناریو 5/4؛ در دوره آتی (2021-2040) تبخیر تعرق نسبت به مقدار آن در دوره پایه افزایش مییابد اما در دوره های (2041-2060، 2061-2080 و 2081-2100) و در سناریو 5/4و 5/8 حاصل از مدل LARS-WG میانگین تبخیرتعرق واقعی نسبت به مقدار آن در دوره پایه کاهش خواهد داشت. پایگاه اطلاعاتی DKRZ تحت سناریوهای 5/4 و 5/8، در هر 4 دوره آتی، کاهش میانگین تبخیرتعرق واقعی نسبت به مقدار آن در دوره پایه برای این دو تاریخ را پیش بینی می کند. با کاشت در تاریخ های 15 اسفند، 1 فروردین و 15 فروردین، طبق نتایج حاصل از شرایط اقلیمی مدل LARS-WG و پایگاه اطلاعاتی DKRZ تحت سناریوهای 5/4 و 5/8، در هر 4 دوره آتی؛ میانگین تبخیرتعرق واقعی نسبت به مقدار آن در دوره پایه کاهش خواهد داشت.نتایج: نتایج نشان می دهد میانگین تبخیر-تعرق واقعی نسبت به مقدار آن در دوره پایه، در دو تاریخ 15 بهمن ماه و 1 اسفند ماه در دوره 2021-2040 در شرایط اقلیمی حاصل از مدل LARS-WG تحت سناریو 5/4 افزایش خواهد داشت. اگر کشت در بقیه تاریخها صورت پذیرد، طبق نتایج حاصل از شرایط اقلیمی مدل LARS-WG و پایگاه اطلاعاتی DKRZ تحت سناریوهای 5/4 و 5/8، در هر 4 دوره آتی میانگین تبخیر-تعرق واقعی نسبت به مقدار آن در دوره پایه کاهش خواهد داشت. بیشترین تبخیر-تعرق در دورههای آتی، با کشت در تاریخ 15 فروردین، تحت شرایط اقلیمی حاصل از مدل LARS-WG تحت سناریو 5/4 و در دوره 2021-2040 اتفاق میافتد. مقدار آن برابر 9/289 میلیمتر (با انحراف معیار 33/18 میلیمتر) است. کمترین تبخیر-تعرق در دورههای آتی با کشت در تاریخ 15 بهمن، تحت شرایط اقلیمی حاصل از پایگاه اطلاعاتی DKRZ تحت سناریو 5/8 و در دوره 2081-2100 اتفاق می افتد که مقدار آن برابر 6/166 میلیمتر (با انحراف معیار 82/5 میلیمتر) می باشد.
Background and Aim: It is necessary to predict the effects of climate change on agricultural production in the coming periods in order to ensure the food security of the strategic plant wheat, which plays an essential role in international treaties. Models that generate artificial climate data, such as valid GCM models, are used to investigate the effects of climate change on various systems and are able to model climate parameters for a long period of time using scenarios approved by the Intergovernmental Panel on Climate Change. In the current research, two information sources, LARS-WG and DKRZ, were used to generate climate change data of the Qazvin plain in the period of 2021-2100, then the actual evapotranspiration values of Parsi spring wheat were calculated by the Aquacrop model in different planting dates and the amount of their changes Compared to the base course.Method: In this research, from the data obtained from the DKRZ web database and the LARS-WG model, to calculate the three variables of minimum temperature, maximum temperature and precipitation, related to Qazvin observation station and five atmospheric general circulation models of the fifth IPCC report (EC-EARTH , GFDL-CM3, HadGEM2-ES, MIROC5, MPI-ESM-MR) were used under two emission scenarios of 4.5 and 8.5 in future rounds (2021-2040, 2041-2060, 2061-2080, 2081-2100). Using the obtained data and applying the Aquacrop model, the amount of actual evaporation-transpiration of spring wheat on 5 different planting dates (15 Bahman, 1 Esfand, 15 Esfand, 1 April and 15 April) was calculated and the amount of their changes compared to the period the base was checked.Results: Observations show that with cultivation on 15th of Bahman and 1st of March under the climatic conditions obtained from the LARS-WG model in scenario 4/5; In the future period (2040-2021), transpiration will increase compared to its value in the base period, but in the periods (2041-2060, 2061-2080 and 2081-2100) and in the scenario 4.5 and 5.8 from the LARS model - WG average real evapotranspiration will decrease compared to its value in the base period. DKRZ database under scenarios 4.5 and 8.5 predicts a decrease in the average actual evapotranspiration compared to its value in the base period for these two dates in each of the next 4 periods. by planting on March 15, April 1 and April 15, according to the results of the climate conditions of the LARS-WG model and the DKRZ database under scenarios 4/5 and 8/5, in each of the next 4 periods; The average actual evapotranspiration will decrease compared to its value in the base period.Conclusion: The results show that the average real evapotranspiration will increase compared to its value in the base period, on the two dates of February 15 and March 1 in the period of 2040-2021 in the climate conditions obtained from the LARS-WG model under scenario 4.5.If cultivation is carried out in the rest of the dates, according to the results of the climatic conditions of the LARS-WG model and the DKRZ database under scenarios 4.5 and 5.8, in each of the next 4 periods, the average real evapotranspiration will decrease compared to its value in the base period Will have. The highest evaporation-transpiration in the future periods will occur with cultivation on April 15, under the climate conditions obtained from the LARS-WG model under scenario 4/5 and in the period of 2040-2021. Its value is equal to 289.9 mm (with a standard deviation of 18.33 mm). The lowest evaporation-transpiration in the future periods with cultivation on 15th of Bahman, under the climatic conditions obtained from the DKRZ database under scenario 8.5 and in the period 2081-2100, which is equal to 166.6 mm (with a standard deviation of 82.5 mm).:
Abdollahzadeh, M., Ramezani etedali, H., Ababaei, B., & Nazari, B. (2019). Estimation of actual evapotranspiration and net irrigation water requirement for strategic agricultural crop in Moghan plain using AquaCrop model. Nivar 43(104-105): 113-122. (In Persian with English abstract). https://doi.org/10.30467/nivar.2019.141476.1101.
Alizadeh, H. A., Nazari, B., Parsinejad, M., Ramezani, Eetedali, H., janbaz, H. R., 2010. Evaluation of AquaCrop Model on Wheat Deficit Irrigation in Karaj area. Iranian journal of Irrigation and drainage . No. 2, Vol. 4, fall 2010, p. 273-283. (In Persion)
Chung, E.S., Park, K., & Lee, K.S. 2011. The Relative Impacts of Climate Change and Urbanization on the Hydrological Response of a Korean urban Watershed. Hydrol. Process, 25, 544–560, doi:10.1002/hyp.7781.
Eskandari Damane, H., Zehtabian, G., Khosravi, H., Azarnivand, H., & Barati, A. 2020. Simulation and Forecasting of Climatic Components of Temperature and Precipitation in Arid Regions (Case study: Minab plain). Geography, 18(66), 110-128. (In Persian)
Ghasemi-Saadat Abadi, F., Zand-Parsa, Sh., Mahbod, M., 2021. Estimation of Actual Evapotranspiration, Water productivity, and Irrigation Efficiency of Wheat Fields in Surface and Sprinkler Irrigation Systems Using Remote Sensing. Journal of Water and Soil Science. 25 (4). (In Persian)
Kilsby, Chris G, P D Jones, A Burton, A C Ford, Hayley J Fowler, C Harpham, P James, A Smith, and R L Wilby. 2007. A Daily Weather Generator for Use in Climate Change Studies. Environmental Modelling & Software 22 (12). Elsevier: 1705–19.
Mohammadi, M., Davari, K., Ghahreman., B, Ansari., H, Haghverdi., A. 2015. Calibration and validation of AquaCrop model for simulating spring wheat yield under simultaneous salinity and drought stress. Water research in agriculture. 29(3), 277-295. (in Persian)
Oki, T., & Kanae, S. 2006. Global hydrological cycles and world water resources. Science 313(5790): 1068–1072.
Parvizi, S., ZandParsa, Sh., Mahbid, M., 2015. Water, irrigation and productivity: estimation of standard and actual evapotranspiration of winter wheat using AquaCrop, WSM and dual plant factor models. (In Persian)
Semonov, M. A., Stratonovith, P., 2010. Use of multi- model ensembles from global models for assessment of climate change impacts. J. Climate Research. Vol. 41.2010.p.1-14.
Semenov, M. A., 2008. Simulation of Extreme Weather Events by a Stochastic Weather Generator. Climate Research 35 (3): 203–12.
Steduto, Pasquale, Theodore C Hsiao, Dirk Raes, and Elias Fereres. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101 (3). Wiley Online Library: 426–37.
Racsko, P, L Szeidl, and M Semenov. 1991. “A Serial Approach to Local Stochastic Weather Models. Ecological Modelling 57 (1–2). Elsevier: 27–41.
Ramezani Etedali, H., Safari, F. (2022). Evaluation of the Influence of Different ETO Estimation Methods in Simulation of Wheat Actual Evapotranspiration and Biomass by AquaCrop Model. Journal of Water and Soil. https://doi.org/10.22067/jsw.2022.76839.1171. (In Persian)
Vicente-Serrano, S.M., Azorin-Molina, C., & Sanchez-Lorenzo, A. 2014. Sensitivity of Reference Evapotranspiration to changes in Meteorological Parameters in Spain (1961–2011). Water Resources Research 50(11): 8458–8480. https://doi.org/10.1002/ 2014WR015427.
Williams, A. G. 1991. Modeling Future Climates: From GCMs to Statistical Downscaling Approaches. University of Toronto at Scarborough, 56p.
Zwart, S. J. and W, G. M. Bastiaanssen. 2004. Review of measured crop water productivity values for irrigate wheat, rice, cotton and maize. Agricultural Water Management 69(2): 115-133.
_||_