تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریعلی حکمت زاد 1 , مسعود داوری 2 , محمدعلی محمودی 3 , کمال نبی الهی 4
1 - دانشجوی کارشناسی ارشد فیزیک و حفاظت خاک دانشگاه کردستان
2 - عضو هیئت علمی گروه علوم و مهندسی خاک دانشگاه کردستان
3 - عضو هیئت علمی گروه علوم و مهندسی خاک دانشگاه کردستان
4 - عضو هیئت علمی گروه علوم و مهندسی خاک دانشگاه کردستان
کلید واژه: پرمامتر گلف, شبکههای عصبی, ویژگیهای زودیافت خاک, توابع انتقالی خاک, هدایت هیدرولیکی اشباع,
چکیده مقاله :
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل اعتماد هستند. یکی از راههای غلبهبر این مشکل، استفاده از روشهای غیرمستقیم همچون توابع انتقالی خاک میباشد. از آنجایی که تاکنون در منطقه موردمطالعه توابعی انتقالی جهت برآورد Ks پیشنهادنشده است؛ لذا در این پژوهش با استفاده از شبکههای عصبی مصنوعی و رگرسیونهای آماری و بهرهگیری از تعدادی محدود یا مجموعهای وسیعتر از ویژگیهایزودیافت خاکی، توابعی انتقالی برای برآورد Ks تبیین و کارآیی آنها ارزیابی شد. بدین منظور، هدایت هیدرولیکی اشباع 95 نقطه محل از زیرحوزههای آبخیز چرداول -چمشیر در استان ایلام با استفاده از پرمامتر گلف اندازهگیری شد. همچنین برخی از ویژگیهای زودیافت خاک این نقاط مطالعاتی نیز تعیین شد. سپس اعتبار توابعاشتقاق یافته در تعیین Ks ، با استفاده از جذر میانگین مربعات خطا ) RMSE (، میانگین خطا ) ME ( و ضریب همبستگی پیرسون ) r ( ارزیابی شد. با توجه به نتایج، Ksبا میانگین هندسی قطر ذارت و مقدار شن دارای بیشترین همبستگی بود )بهترتیب دارای r معادل 58 / ۰ و 56 / ۰(. نتایج نشان داد در صورت دسترسی به تعداد کمی ازویژگیهای زودیافت خاکی، توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی میتوانند Ks را با دقت نسبتاً خوبی پیشبینی کنند )به ترتیب دارای85 / ۰ = rR-val ، mm/hr 81 / 6 = RMSER-val و 87 / ۰ = rANN-test ، mm/hr 8۰ / 1۰ = RMSEANN-test (. این در حالی است که با توجه به نتایج، در صورت استفاده از ویژگیهای زودیافت بیشتر، دقت پیشبینی Ks توسط مدل شبکه عصبی در هر دو مرحله آموزش و آزمون افزایش یافت ) 92 / ۰ = rtrain ،mm/hr 36 / 4 = RMSEtrain و 89 / ۰ = rtest ، mm/hr 17 / 7 = RMSEtest (. در مجموع نتایج نشان دادند که شبکههای عصبی مصنوعی در مقایسه با مدلهای رگرسیونی خطی دارای کارآیی نسبتاً بهتر در تخمین هدایت هیدرولیکی اشباع خاک میباشند.
Saturated hydraulic conductivity (Ks) is one of the essential input for water flow and solute transport modelling, irrigation and drainage design, groundwater modeling and environmental processes. Direct measurement of Ks is possible, but that is usually time consuming, tedious, expensive and impractical for larger scale studies. Also, these methods are partly unreliable because of soil heterogeneity and experimental errors. One solution to govern this problem is using indirect methods such as pedo-transfer functions (PTFs). Since PTFs have not yet beendeveloped to soils in the study area, this study evaluates and describes neural network and statistical regression PTFs to predict Ks from limited or more extended sets of the readily available soil properties. For this purpose, Ks from 95 points of Sirwan-Chardawel sub-basins in Ilam province were measured using Guelph permeameter. Also, some of the readily available soil parameters were obtained. The accuracy and reliability of the derived PTFs were evaluated using root mean square error (RMSE), mean error (ME) and Pearson correlation coefficient (r). The highest correlation coefficients of 0.58 and 0.56 were found between Ks and geometric mean particle diameter and sand content, respectively. The results indicated that artificial neural network and regression PTFs can predict Ks with relatively good accuracy even if a few readily available soil properties are measured (rR-val= 0.85, RMSER-val= 6.81 mm/hr and rANN-test= 0.87, RMSEANN-test= 10.80 mm/hr). However, based upon results, the prediction accuracy of ANN model at both training and testing stages increased if more readily available soil properties are used (rtrain= 0.92, RMSEtrain= 4.36 mm/hr and rtest= 0.89, RMSEtest= 7.17 mm/hr). In general, it was found that ANNs method had better performance than linear regression model in predicting Ks.
بابائیان، ا.، ه ایی، م. و نوروزی، ع. ا. 1392 . ارزیابی توابع انتاالی طیفی و توابع انتاالی خاک در پیش بینوی نگهداشوت آب در
خاک. نشریه حفاظت منابع آب و خاک. 3 ( 3 :) 25 - 43 .
خاش ی سیوکی، ع.، جلالی موخر، و.، نوفرستی، ع. م. و رمضوانی، ی. 1394 ارزیوابی روش غیرپارامتریو k نزدیو تورین -
ه سایه و سیسته های شبکه عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع خاک. م له الکترونی مودیریت خواک
و تولید پایدار، 5 ( 3 :) 81 - 95 .
خلیلیمادم، ب.، افیونی، م.، جلالیان، ا.، عباسپور، ک. و دهاانی، ا. ا. 1394 . کاربرد روشهای رگرسیونی و شبکههوای عصوبی
بهمنظور تخ ین هدایت هیدرولیکی اشباع خاک منهاه زاگرس مرکزی. م له علوم و فنون کشاورزی و منوابع طبی وی، علووم
آب و خاک 71 : 227 - 217 .
شیرانی، ه. و رفیعنژاد، ن. 1390 . برآورد برخی ویژگیهای دیریافوت خواک هوای اسوتان کرموان بوا اسوتفاده از توابوع انتاوالی
رگرسیونی و شبکه عصبی مصنوعی. م له پژوهشهای خاک، 25 ( 4 :) 360 - 349 .
فلامکی، ا. و اسکندری، م. 1391 . تخ ین ضریب توزیع خاک آب فلزات سنگین با کاربرد شبکه های عصبی مصنوعی. نشریه -
حفاظت منابع آب و خاک. 2 ( 1 :) 25 - 36 .
قربانی دشتکی، ش. ، دهاانی بانیانی، س.، خداوردیلو، ه.، مح دی، ج. و خلیل مادم، ب. 1391 . برآورد هدایت آبی اشوباع و
عکس طول درشت مویینگی خاک با استفاده از توابع انتاالی خاک. م له علوم و فنون کشاورزی و منابع طبی ی، علوم خواک
و آب، 16 ( 60 :) 157 - 145 .
قنبریان علوی ه، ب.، لیاقت، ع. و سهرابی، س. 1388 . کاربرد شبکه عصبی مصنوعی در پیش بینی هدایت هیدرولیکی اشباع بوا
استفاده از پارامترهای فیزیکی خاک. م له تحایاات مهندسی کشاورزی، 10 ( 1 :) 97 - 112 .
نصرتی کاریزک، ف.، موحدی نایینی، ع.، هزارجریوب ، ا.، روشونی ، . و دهاوانی ، ا. ا. 1391 . اسوتفاد ه از شوبکه هوای عصوبی
مصنوعی برای برآورد هدایت هیدرولیکی اشباع از ویژگی های زودیافت خاک. م لوه الکترونیو مودیریت خواک و تولیود
پایدار، 2 ( 1 :) 95 - 110 .
نوابیان، م.، لیاقت، ع. و ه ایی، م. 1383 . تخ ین هدایت هیدرولیکی اشباع با استفاده از توابع انتاالی. م له پژوهشی مهندسوی
کشاورزی 4 ( 16 :) 12 - 1 .
Ahuja, L.R., Cassel, D.K., Bruce R.R. and Barnes. B.B. 1989. Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Science, 148: 404-411.
Aimrun, W. and Amin, M.S.M. 2009. Pedo-transfer function for saturated hydraulic conductivity of lowland paddy soils. Paddy Water Environmental, 7: 217–225.
Al Majou, H., Bruand, A. and Duval, O. 2008. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Canadian Journal of Soil Science. 88: 533-541.
Bagarello, V., Sferlazza, S. and Sgroi, A. 2009. Comparing two methods of analysis of single-ring infiltrometer data for a sandy–loam soil. Geoderma, 149: 415-420.
Bruand, A., Fernández, P.P. and Duval, O. 2003. Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves. Soil Use and Management, 19: 232-242.
Dane, J.H. and Topp, C.G., (eds.). 2002. Methods of Soil Analysis: Part 4 Physical Methods Madison, WI: Soil Science Society of America, Soil Science Society of America Book Series Number 5, ISBN 0-89118-810-X, 1692 p.
Ghanbarian-Alavijeh, B., Liaghat, A.M. and Sohrabi, S. 2010. Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model. World Academy of Science, Engineering and Technology, 4(2): 58- 63.
Hamilton, L.C. 1990. Modern data analysis. A first course in applied statistics, pp 684.
Islam, N., Wallender, W.W., Mitchell, J.P., Wicks, S. and Howitt, R.E. 2006. Performance evaluation of methods for the estimation of soil hydraulic parameters and their suitability in a hydrologic model. Geoderma, 134: 135-151.
Jabro, J.D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transaction of American Society of Agricultural Engineers. 35(2): 557–560.
Jarvis, N.J., Zavattaro, L., Rajkai, K., Reynolds, W.D., Olsen, P.-A., McGechen, M., Mecke, M. and Mohanty, B. leeds-Harrison P.B. and Jacques, D. 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108, 1-17.
Lado, M., Paz, A. and Ben-Hur, M. 2004. Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal, 68: 234–242.
Lim, D. and Kolay, P. 2009. Predicting Hydraulic Conductivity (K) of Tropical Soils by Using Artificial Neural Network (ANN). UNUMAS E-Journal of Civil Engineering, 1(1), 1-6.
Mbagwu, J.S.C., and Auerswald, K. 1999. Relationship of percolation stability of soil aggregates to land use, selected properties, structural indices and simulated rainfall erosion. Soil and Tillage Research, 50: 197–206.
Merdun, H., Çınar, Ö., Meral, R. and Apan, M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90: 108-116.
Minasny, B., Hopmans, J., Harter, T., Eching, S., Tuli, A. and Denton, M. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal, 68: 417-429.
Navi, K., Twarakavi, C., Šimůnek, J. and Schaap, M.G. 2009. Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines. Soil Science Society of America Journal. 73:1443-1452.
Nemes, A., Rawls, W.J. and Pachepsky, Y.A. 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Science Society of America Journal, 69(4):1330-1337.
Parasuraman, K., Elshorbagy, A. and Cheng Si, B. 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Science Society of America Journal, 70: 1851-1859.
Patile, N.G. and Singh, S.K. 2016. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere, 26(4): 417–430.
Qiao, J., Zhu, Y., Jia, X., Huang, L. and Shao, M. 2018. Estimating the spatial relationships between soil hydraulic properties and soil physical properties in the critical zone (0–100m) on the Loess Plateau, China: A state-space modeling approach, CATENA, 10: 385-393.
Rawls, W.J., Nemes, A. and Pachepsky, Y.A., 2004. Effect of soil organic carbon on soil hydraulic properties. Developments in soil Science, 30: 95-114.
Rezaei Arshad, R., Sayyad, Gh., Mosaddeghi, M., and Gharabaghi, B. 2013. Predicting Saturated Hydraulic Conductivity by Artificial Intelligence and Regression Models. ISRN Soil Science, 2013: 1-8.
Rogiers, B., Mallants, D., Batelaan, O., Gedeon, M., Huysmans, M. and Dassargues, A. 2012. Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks. Mathematical Geosciences, 44: 739-763.
Schaap, M.G. and Leij, F.J. 1998. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 47: 37-42.
Shirazi, M.A. and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48: 142-147.
Slazar, O., Wesström, I. and Joel, A. 2008. Evaluation of drainmod using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural water management, 95(10): 1135-1143.
Tamari, S., Wösten, J.H.M. and Ruiz-Suarez, J.C. 1996. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society of America Journal, 60(6): 1732-1741.
Tietje, O. and Hennings, V. 1996. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma, 69: 71-84.
Vereecken, H., Maes J. and Feyen, J. 1990. Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science, 149(1): 1-12.
Wösten, J., Pachepsky, Y.A. and Rawls, W. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of hydrology, 251: 123-150.
Xu, C., Xu, X., Liu, M., Liu, W., Yang, J., Luo, W., Zhang, R. and Kiely, G. 2017. Enhancing pedotransfer functions (PTFs) using soil spectral reflectance data for estimating saturated hydraulic conductivity in southwestern China, CATENA: 158: 350-356.
Zhao, C., Shao, M., Jia, X., Nasir, M. and Zhang, C. 2016. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China, CATENA, 143: 1-6.