کاربرد تصاویر ماهوارهای و فنآوری سنجش از دور برای تخمین عملکرد برنج
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریحدیث یاقوتی 1 , ابراهیم پذیرا پذیرا 2 , ابراهیم امیری 3 , محمدحسن مسیح آبادی 4
1 - دانشجوی دکتری فیزیک و حفاظت خاک، دانشکده کشاورزی و منابع طبیعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادگروه خاکشناسی،دانشکده کشاورزی ومنابع طبیعی،واحدعلوم و تحقیقات،دانشگاه آزاد اسلامی، تهران، ایران.
3 - دانشگاه آزاد اسلامی واحد لاهیجان
4 - استادیار موسسه تحقیقات خاک و آب، تهران، ایران
کلید واژه: NDVI, مدل تجربی, شالیزار, سنجش از دور,
چکیده مقاله :
برنج اصلیترین محصول استانهای شمالی ایران بهشمار میرود. نظارت بر تولید سالانه و سطح زیر کشت برنج به عنوان محصولی راهبردی، نقش بسزایی دربرنامه ریزیهای کشاورزی دارد. امروزه میتوان با تکیه بر فنآوری سنجش از دور و شاخصهای پوشش گیاهی روشهای مدیریتی را بهبود بخشید. پژوهش حاضر باهدف برقراری رابطه رگرسیونی بین عملکرد ارقام محلی و پرمحصول برنج در سال 1391 ( 2012 م( و شاخصهای NDVI ، SAVI ، DVI و RVI مستخرج از تصاویرماهواره لندست 7، در شالیزارهای شهرستان شفت، انجام گرفته است. بیشترین همبستگی بین عملکرد تولیدی و شاخصها در مرحله گلدهی برنج دیده شد و از میانشاخصهای مذکور، NDVI مناسبترین شاخص برای برآورد عملکرد ارقام محلی و پرمحصول برنج در منطقه معرفی میشود. معیارهای آماری نشان از توانایی خوبمدل در شبیهسازی دارد. شاخص کارائی مدلسازی ) EF ( برای ارقام محلی و پرمحصول، در سال زراعی 1392 ( 2013 م( به ترتیب معادل با 60 / 0 و 41 / 0 بود؛ کهبیانگر کارآمدی بالای مدل در پیشبینی قابل قبول درصد کاهش عملکرد محصول میباشد. نتایج طراحی مدل حاکی از آن است که میزان عملکرد شبیهسازی شده،برازش خوبی با مقادیر مشاهده شده دارد. نتایج آزمون آماری، نشان میدهد تفاوت معنیداری بین مقادیر مشاهده شده و شبیهسازی شده وجود ندارد ) P>0.05 (. مقدارضریب تبیین 70 / 0 و 66 / 0 بین عملکرد واقعی و برآورد شده میتواند ناشی از تغییر شرایط کاشت و مدیریت زراعی، آفات و امراض گیاهی، وضعیت آب و هوایی منطقهو بسیاری از متغیرهای محیطی باشد.
Rice is the main product of northern provinces of IRAN. Rice, as a strategic product that plays an important role in agricultural planning, needs to monitor annual production and crop area. Today, management practices can be improved using remote sensing technology and vegetation indices. The present study was conducted in order to determine the regression correlation between local and high-yielding varieties of rice in 2012, with NDVI, SAVI, DVI and RVI indices extracted from landsat7 ETM+ images, and to identify the most appropriate index in paddies Shaft. The highest coefficient of determination between yield and indices belonged to the flowering period, among these indices, NDVI is the most suitable indices for estimating the yield of local and high yielding rice varieties in the region. The statistical criteria show a good ability to simulate the model. Modeling efficiency (EF) were for local and high yielding varieties in crop year 2013 to the equivalent of 0.60 and 0.41 respectively, which represents a high efficient model in predicting product yield is acceptable percent. Modeling results indicate that the simulated yield level is well fitted with observed values. The results of the statistical test show that there is no significant difference between the observed and simulated values (P>0.05). The correlation coefficient of determination 0.70 and 0.66 between the observed and estimated yields in the evaluation of the models might be related to the changes in planting conditions and agricultural management, plant pests and diseases, climatic condition of the area and multiple local variables.
اندرزیان، ب.، بخشنده، ع.، فتحی، ق.، عالمی سعید، خ.، بنایان، م. و امام، ی. 1386 . CDSS-Model : مدلی برای شبیهسازی
مراحل نمو گیاهان زراعی. مجله پژوهش و سازندگی در زراعت و باغبانی، 76 : 79 - 71
خیرخواه زرکش، م.م.، درویشی، م.، آبکار، ع.ا. و احمدی، غ.ر. 1392 . برآورد شاخصهای پوشش گیاهی برنج با تصاویر چند
زمانه راداری و اپتیک. پژوهشهای جغرافیای طبیعی، 45 ( 4 :) 96 - 85 .
درویشزاده، ر.، متکان، ع.ا. و اسکندری، ن. 1390 . ارزیابی شاخصهای طیفی استخراج شده از تصاویر ALOS-AVNIR2 به
منظور تخمین میزان بایومس محصول برنج. چشمانداز جغرافیایی )مطالعات انسانی(، 14 : 73 - 61 .
رضایی، م.، رائینی سرجاز، م.، شاهنظری، ع. و وظیفهدوست، م. 1393 . برآورد عملکرد برنج در بخشی از شبکه سفیدرود
گیلان با استفاده از تصاویر ماهواره لندست )مطالعه موردی: صومعه سرا(. نشریه آبیاری و زهکشی ایران، 3 ( 8 :) 601 - 591 .
علویپناه، س.ک.، احسانی، ا.ه.، متینفر، ح.ر.، رفیعی امام،ع. و امیری، ر. 1387 . مقایسه محتوای اطلاعاتی سنجندههای TM و
ETM+ در محیطهای بیابانی و و شهری ایران. پژوهشهای جغرافیا، 47 : 64 - 56 .
علی آبادی، ک. و انتصاری، ع.ر. 1393 . تخمین پارامتر فیزیکی )زی توده( پوشش گیاهی با استفاده از دادههای سنجش از
دوری. مطالعات جغرافیایی مناطق خشک، 4 ( 15 :) 33 - 23 .
Ali, S.M. and Mohammed, M.J. 2013. Gap-filling restoration methods for ETM+ sensor image. Iraqi Journal of Science, 54(1): 206-214.
Aboelghar, M., Arafat, S., Abo Yousef, M., El-Shirbeny, M., Naeem., S., Massoud, A. and Saleh, N. 2011. Using SPOT data and leaf area index for rice yield estimation in Egyptian Nile delta. The Egyptian Journal of Remote Sensing and Space Sciences, 14: 81-89.
Bao, Y., Gao, W. and Gao, Zh. 2009. Estimation of winter wheat biomass based on remote sensing data at various spatial and spectral resolution. Front Earth Scientist, 3(1): 118-128.
Cheng, Q. and Wu, X. 2011. Mapping paddy rice yield in Zhejiang Province using MODIS spectral index. Turkish Journal of Agriculture and Forestry, 35: 579-589.
Day, R. 1965. Particle fractionation and particle size analysis. In: C. A. Black et al (ed.) Methods of soil analysis. Part 1. P: 545-566. Ser. No. 9. ASA. Madison, WI.
El Nahry, A.H., Ali, R.R. and El Baroudy, A.A. 2012. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Journal of Agricultural Water Management, 98: 517-531.
Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309.
Johnson, D.M. 2014. An assessment of pre-and whithin-season remotely sensed variable for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141(0):116-128.
Jordan, C.F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology, 50: 663–666.
Lin, W., Fu-cun, Z., Yuan-shu, J., Xiao-dong, J., Shen-bin, Y., and Xiao-mei, H. 2014. Multi-temporal detection of rice phonological stages using canopy spectrum. Rice Science, 21(2): 108-115.
Matinfar, H.R. 2013. Modeling wheat yield estimation base upon spectral data and field measurement, case study: Razan plain, Iran. 2013. Technical Journal of Engineering and Applied Sciences, 3(17): 2123-2130.
Masek, J.G., Huang, C. Q., Wolfe, R., Cohen, W., Hall, F., and Kutler, J. 2008. North American forest disturbance mapped from a decadal Landsat record. Remote Sensing of Environment, 112: 2914-2926.
Mosleh, M.K., Hassan, Q.K., and Chowdhury, E.H. 2015. Application of remote sensor in mapping rice area and forecasting its production: A Review. Sensors, 15: 769-791.
Noureldin, N.A., Aboelghar, M.A., Saudy, H.S., and Ali, A.M. 2013. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 16: 125-131.
Nuarsa, I.W., Nishio, F., and Hongo, Ch. 2012. Rice yield estimation using Landsat ETM+ data and field observation. Journal of Agricultural Science, 4(3): 45-56.
Panda, S.S., Ames, D.P., and Panigrahi, S. 2010. Application of vegetation indices for agricultural crop yield prediction using Neural network techniques. Remote Sensing, 2(3): 673-696.
Rahman, A., Roytman, L., Krakauer, N.Y., Nizamuddin, M., and Goldberg, M. 2009. Use of vegetation heaith data for estimation of Aus rice yield in Bangladesh. Sensors, 9: 2968-2975.
Rezaei, M., Shahnazari, A., Raeini sarjaz, M., and Vazifedoust, M. 2016. Improving agricultural management in a large-scale paddy field by using remotely sensing data in the CERES-Rice model. Irrigation and drainage, 65: 224-228.
Richardson, A.J. and Everitt, J.H. 1992. Using spectra vegetation indices to estimate rangeland productivity. Geocarto International, 7(1): 63–69.
Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. 3rd ERTS Symposium, NASA SP-351, 1: 309–317.
Siyal, A.A., Dempewolf, J. and Becker-Reshef, I. 2015. Rice yield estimation using Landsat ETM+ Data. Journal of Applied Remote Sensing, 9: 1-16.
Son, N.T., Chen, C.F., Chen, C.R., Minh, V.Q., and Trung, N.H. 2014. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and Forest Meteorology, 197: 52-64.
Walkly, A. and Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
Wei-guo, L., Hua, L., and Li-hua. Z. 2011. Estimating Rice Yield by HJ-1A Satellite Images. Rice Science, 18: 142-147.
Yuping, M., Shili, W., Li, Zh., Yingyu, H., Liwei, Zh., Yanbo, H., and Futang, W. 2008. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. International Journal of Applied Earth Observation, 10: 426-437.
Zhang, H., Chen, H., and Zhou, G. 2012. The model of wheat yield forecast based MODIS-NDVI-A case study of Xinxiang. International Society for Photogrammetry and Remote Sensing Conference, Melbourne, Australia, 25 August–01 September 2012: 25-28.li, S.M. and Mohammed, M.J. 2013. Gap-filling restoration methods for ETM+ sensor image. Iraqi Journal of Science, 54(1): 206-214.