شبیه سازی خودهمبسته جریان حوضه آبریز زرینه رود با استفاده از روش تجزیه پروکراستس و مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریبهروز سبحانی 1 , محمد عیسی زاده 2 , منیر شیرزاد 3
1 - دانشیار گروه جغراقیا دانشگاه محقق اردبیلی
2 - دانشجوی دکتری دانشگاه تبریز
3 - دانشجوی ارشد
کلید واژه: تجزیه پروکراستس, ماشین بردار پشتیبان, پیشبینی جریان, شبکه عصبی مصنوعی,
چکیده مقاله :
پیش بینی جریان رودخانه ها در حوضه های آبریز نقش مهمی در بهره برداری و مدیریت صحیح منابع آبی دارد. تعیین نوع و تعداد ورودی مدل های تخمین گر، یکی از مهم ترین مراحل در پیش بینی جریان رودخانه ها می باشد. بنابراین از روش تجزیه پروکراستس (PA) برای تعیین تعداد ورودی های موثر استفاده شده است. در این تحقیق پیش بینی جریان با استفاده از داده های جریان ماهانه ایستگاه های آب سنجی صفاخانه و سنته انجام گرفته است. مدل شبکه عصبی مصنوعی (MLP) و مدل ماشین بردار پشتیبان (SVM) برای پیش بینی جریان مورد استفاده قرار گرفته اند. بهترین تخمین جریان با استفاده از مدل های MLP و PA-MLP در ایستگاه آب سنجی صفاخانه به ترتیب با RMSE برابر با (m3/s) 68/5 و (m3/s) 85/4 و CC برابر با 73/0 و 78/0 و در ایستگاه آب سنجی سنته به ترتیب با RMSE برابر با (m3/s) 44/6 و (m3/s) 36/6 و CC برابر با 78/0 و 79/0 انجام شده است. مدل PA-SVM نیز به ترتیب با RMSE و CC برابر با (m3/s) 45/5 و 73/0 در دوره صحت سنجی نتایج بهتری را نسبت مدل SVM در تخمین جریان ایستگاه آب سنجی صفاخانه داشته است. همچنین نتایج نشان داد که مدل های SVM و PA-SVM جریان ایستگاه سنته را با RMSE به ترتیب برابر با (m3/s) 85/6 و (m3/s) 03/7 تخمین زده اند. در حالت کلی نتایج نشان داد که روش تجزیه پروکراستس می تواند به عنوان یکی از روشهای کارآمد و مناسب جهت تعیین تعداد ورودی موثر مورد استفاده قرار گیرد. مقایسه نتایج مدل های MLP و SVM نیز نشان داد که مدل MLP از دقت بیشتری نسبت به مدل SVM برخوردار است.
Rivers flow prediction in river basins has an important role in the operation and correct management of water resources. Determining type and number of estimator models inputs is one of the important steps in rivers flow prediction. Therefore, The Procrustes analysis (PA) method for determining the number of effective inputs was used. In this study, flow prediction was done using the flow data obtained from the Safakhaneh and Santeh hydrometric stations. The Artificial Neural Network (ANN) and The Support Vector Machine (SVM) models was used for flow prediction. The best estimation of flow is done using the MLP and SVM models in Safakhaneh hydrometric station with RMSE equal to 5.68 (m3/s) and 4.85 (m3/s), respectively, and CC equal to 0.73 and 0.78, respectively. While in Santeh hydrometric station RMSE was equal to 6.44 (m3/s) and 6.36 (m3/s) respectively, and CC was equal to 0.78 and 0.79 respectively for MLP and SVM models. PA-SVM model showed better results than SVM model in estimating Safakhaneh hydrometric stations flow with RMSE equal to 5.45 (m3/s) and CC equal to 0.73 during the test period. The results also indicated that SVM and PA-SVM models estimated the flow of Santeh station with RMSE equal to 6.85 (m3/s) and 7.03 (m3/s) respectively. Basically, results indicated that the Procrustes analysis method can be used as one of the Efficient and suitable methods for determining the number of effective inputs. Comparison of the ANN and SVM results indicated that ANN model has more accuracy than SVM model.
ازانی، ع. 1393. شبیهسازی بارش-رواناب با استفاده از ماشین بردار پشتیبان در حوضه آبریز صوفیچای. پایاننامه کارشناسی ارشد، دانشگاه تبریز، دانشکده کشاورزی، 120 صفحه.
ازانی، ع.، فاضلیفرد، م.ح. و قربانی، م.ع. 1393. شبیهسازی سطح آب دریاچه ارومیه با استفاده از ماشینهای بردار پشتیبان و شبکه عصبی مصنوعی. سیزدهمین کنفرانس هیدرولیک ایران، دانشگاه تبریز، 93-105.
اسکندری، ع.، نوری، ر.، معراجی، ع. و کیاقادی، ا. 1391. توسعه مدلی مناسب بر مبنای شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای پیشبینی به هنگام اکسیژن خواهی بیو شیمیایی 5 روزه. مجله محیط شناسی، 38(61)، 71-82.
بنیحبیب، م.ا.، ولیپور، م. و بهبهانی، س.م.ر. 1390. مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیشبینی جریان ماهانه ورودی به مخزن سد دز. مجله علوم و تکنولوژی محیط زیست، 13(4)،1-14.
دینپژوه، ی. 1382. تحلیل خشکسالیهای هواشناختی با استفاده از آنالیز الگوها. رساله دکتری، دانشگاه تبریز، دانشکده کشاورزی، 288 صفحه.
عیسیزاده، م. 1394. تخمین جریان رودخانه زرینهرود با استفاده از مدلهای هیبریدی فراکاوشی. پایاننامه کارشناسی ارشد، دانشگاه تبریز، دانشکده کشاورزی، 171 صفحه.
نوری، ر.، خاکپور، ا.، دهقانی، م. و فرخنیا، ا. 1389. پیشبینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی. نشریه آب و فاضلاب، 22(1)، 118-129.
Adamowski, J. 2013. Using support vector regression to predict direct runoff, base flow and total flow in a mountainous watershed with limited data in Uttaranchal, India. Annals of Warsaw University of Life Sciences-SGGW, Land Reclamation, 45(1): 71-83.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial neural networks in hydrology, I: preliminary concepts. Journal of Hydrologic Engineering, 5(2): 115-123.
Asefa, T., Kemblowski, M., McKee, M. and Khalil, A. 2005. Multi-time scale stream flow predictions: The Support vector machines approach. Journal of Hydrology, 318(1-4): 7-16.
Awchi, T.A. 2014. River Discharges Forecasting In Northern Iraq Using Different ANN Techniques. Water Resources Management, 28(3): 801–814.
Coulibaly, P., Anctil, F. and Bobée, B. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230(3-4): 244-257.
Dibike, Y., Velickov, S., Solomatine, D. and Abbott, M. 2001. Model induction with of support vector machines: Introduction and applications. Journal of Computing in Civil Engineering, 15(3): 208- 216.
Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh, S. and Mirnia, M. 2004. Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods. Journal of Hydrology, 297(1): 109-123.
Ghorbani, M.A., Ahmadzadeh, H., Isazadeh, M. and Terzi, O. 2016. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 75(6): 1-14.
Guo, B., Gunn, S.R., Damper, R.I. and J.D.B. Nelson. 2008. Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification. IEEE Transactions on Image Processing, 17(4): 622-629.
Johnson, G.L. and Hanson, C.L. 1995. Topographic and atmospheric influences on precipitation variability over a mountainous watershed. Journal of Applied Meteorology, 34(1): 68-87.
Jolliffe, I.T. 1986. Principal Component Analysis. Springer-Verlag, 271pp.
Kakaei Lafadani, E., Moghaddam Nia, A., Ahmadi, A., Jajarmizadeh, M. and Ghafari, M. 2013. Stream flow simulation using SVM, ANFIS and NAM models (A Case study). Caspian Journal of Applied Sciences Reaserch, 2(4): 86-93.
Kalteh, A.M. 2013. Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers and Geosciences, 54: 1–8.
Kavzoglu, T. and Colkesen, I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation. 11(5): 352-359.
Khan, M.S. and Coulibaly, P. 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3): 199–205.
Kisi, O., Moghaddam Nia, A., Ghafari Gosheh, M., Jamalizadeh Tajabadi, M.R. and Ahmadi, A. 2012. Intermittent Streamflow Forecasting by Using Several Data Driven Techniques. Water resources management, 26(2): 457–474.
Krzanowski, W.J. 1987. Selection of variables to preserve multivariate data structure, using principal components. Applied Statistics, 36(1): 22-33.
Liu, G.Q. 2011. Comparison of Regression and ARIMA models with Neural Network models to forecast the daily stream flow. PhD thesis, University of Delaware. 545pp.
Misra, D., Oommen, T., Agarwal, A. and Mishra, S.K. 2009. Application and analysis of Support Vector machine based simulation for runoff and sediment yield. Journal of Biosystems Engineering, 103(9): 527-535.
Nam, W., Shin, H., Jung, Y., Joo, K. and Heo, J.H. 2015. Delineation of the climatic rainfall regions of South Korea based on a multivariate analysis and regional rainfall frequency analyses. International Journal of Climatology, 35(5): 777-793.
Nayak, P.C., Sudheer, K.P., Rangan, D.M. and Ramasastri, K.S. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(2-1): 52-66.
Samsudin, R., Saad, P. and Shabri, A. 2011. River flow time series using least squares support vector machines. Hydrology and Earth System Sciences, 15: 1835-1852.
Terzi, O. and Ergin, G. 2014. Forecasting of monthly river flow with autoregressive modeling and data-driven techniques. Neural Computing and Applications, 25(1): 179-188.
Yu, P.S., Chen, S.T. and Chang, I.F. 2006. Support vector regression for real time flood stage forecasting. Journal of Hydrology, 328(3): 704–716.