بررسی آزمایشگاهی تأثیر لایههای درشت منفذ پیوسته و ناپیوسته در انتقال محلول در خاک
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریفرشید تاران 1 * , علی اشرف صدرالدینی 2 , امیرحسین ناظمی 3
1 - دانشگاه تبریز
2 - دانشگاه تبریز
3 - دانشگاه تبریز
کلید واژه: مسیر درشت منفذ, توده خاک, SEEP/W, CTRAN/W, جریان ترجیحی,
چکیده مقاله :
یکی از مکانیزمهای انتقال مواد محلول در خاک، جریان ترجیحی یا جریان از مسیرهای درشت منفذ است. در این تحقیق، برای بررسی تأثیر مسیرهای درشت منفذ در انتقال محلول، از سه توده خاک حاوی 3 درصد رس، 2/4 درصد سیلت و 8/92 درصد شن در مخزنی به طول 200، عرض 100 و ارتفاع 45 سانتیمتر استفاده شد. توده خاک اول به صورت همگن (بدون مسیر درشت منفذ)، توده خاک دوم حاوی خاک و لایههایی به ضخامت 5 سانتیمتر از سنگریزههایی به قطر 2 تا 4 میلیمتر از سطح تا کف (دارای لایههای درشت منفذ پیوسته) و توده خاک سوم حاوی خاک و لایههایی به ضخامت 5 سانتیمتر از سنگریزههایی به قطر 2 تا 4 میلیمتر از سطح تا عمق 35 سانتیمتری (دارای لایههای درشت منفذ ناپیوسته) تهیه شد. انتقال محلول سدیم کلرید در این سه توده خاک آزمایش و با نرمافزار GeoStudio شبیهسازی شد. محلول انتخابی در توده خاک دارای لایههای درشت منفذ پیوسته در مقایسه با توده خاک بدون لایه درشت منفذ، 27 درصد سریعتر انتقال یافت و غلظتهای اوج محلول رخنه شده نیز زودتر مشاهده شد. تأثیر قابل توجهی در سرعت انتقال محلول در لایههای درشت منفذ ناپیوسته مشاهده نشد. نرمافزار GeoStudio با ضریب تعیین بیش از 89/0 و مقادیر جذر میانگین مربعات خطای کمتر از 25/0 انتقال محلول سدیم کلرید را به طور رضایتبخشی شبیهسازی کرد.
One of the mechanisms of solute transport in soil is preferential flow or flow in macropores. In this study, to investigate the influence of macropore paths on solute transport, three soil bulks composed of 3% clay, 4.2% silt and 92.8% sand in a box with 200 cm length, 100 cm width and 45 cm height were used. The first soil bulk was homogeneous (without macrpore path), the second one contained soil and layers of 5 cm thickness, composed of gravels with 2-4 mm diameter, from surface to bottom of the box (with continuous macropore layers), and the third one contained also contained soil and layers of same thickness and material, but the layers extended only to a depth of 35 cm (with non-continuous macropore layers). The transport of NaCl solution in these three soil bulks were experimented and then simulated using GeoStudio. In the soil bulk having continuous macropore layers, in comparison with the one with no macropore layer, the solute traveled the distance between the surface and the bottom in a shorter time (about 27%) and the peak concentrations were sooner observed (10-20 min). However, the non-continuous layers had no significant impact on the speed of solute transport. The GeoStudio software satisfactorily simulated the solute transport with the coefficient of determination more than 0.970 and the values of the root mean square error less than 0.25.
پناهپور، ا.، افیونی، م.، همایی، م. و هودجی، م. 1387. حرکت کادمیم، کروم و کبالت در خاک تیمار شده با لجن فاضلاب و نمک این فلزات و جذب آن توسط سبزیجات در منطقه شرق اصفهان. مجله آب و فاضلاب، 19 (3): 9-17.
رئیسیزاده، آ.، صیاد، غ.، خرمیان، م.، خادمالرسول، ع. و رمضانی، ن. 1389. توزیع اندازه منافذ خاک و درصد جریان ترجیحی تحت تأثیر بیخاکورزی و خاکورزی مرسوم در خاک با بافت سیلتی کلی لوم. سومین همایش ملی مدیریت شبکههای آبیاری و زهکشی. 10 تا 12 اسفند، دانشگاه شهید چمران اهواز.
زند سلیمی، س.، محبوبی، ع.ا.، مصدقی. م.ر.، رشیدیان، م. و فیروزمنش، م. 1385. بررسی اثر تیمارهای خاک بر منحنی رخنه باکتری اشریشیاکلی آزاد شده از کودهای آلی مختلف. مجله آب و فاضلاب، 17 (3): 63-74.
امیری میجان، ف.ا.، شرفا، م.، لیاقت، ع. و محمدی، م.ح. 1387. بررسی ساز و کار جریان ترجیحی املاح در حضور و عدم حضور ماکروپورها در دو شدت جریان مختلف. مجله آبیاری و زهکشی ایران، 2 (2): 73-80.
Amin, M.G.M., Simunek, J. and Lagdsmand, M. 2014. Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management, 131 (3): 17– 29.
Beven, K. and Germann, P. 1982. Macropores and water flow in soils. Water Resources Research, 18 (5): 1311-1325.
Booltink. H.W.G. 1994. Field-scale distributed modelling of bypass flow in a heavily textured clay soil. Journal of Hydrology, 163 (1-2): 65-84.
Buttle, J.M. and Leigh, D.G. 1997. The influence of artificial macropores on water and solute transport in laboratory soil columns. Journal of Hydrology, 191 (1-4): 290-313.
Castiglione, P., Mohanty, B.P., Shouse, P.J., Simunek, J., van Genuchten, M.Th. and Santini, A. 2003. Lateral Water Diffusion in an Artificial Macroporous System: Modeling and Experimental Evidence. Vadose Zone Journal, 2 (2): 212–221.
Edwards, W.M., Shipitalo, M.J., Owens, L.B. and Dick, W.A. 1993. Factors affecting preferential flow of water and atraxine through earthworm burrows under continuous no-till corn. Journal of Environmental Quality, 22 (3): 453-457.
Gardenas, A.I., Simunek, J., Jarvis, N. and van Genuchten, M.Th. 2006. Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. Journal of Hydrology, 329 (3-4): 647–660.
Hu, Q. and Brusseau, M.L. 1995. Effect of solute size on transport in structured porous media. Water Resources Research, 31 (7): 1637-1646.
Jardine, P.M., Wilson, G.V., Luxmoore, R.J. and Mc Carthy, J.F. 1989. Transport of inorganic and natural organic tracers through an isolated pedon in a forest watershed. Soil Science Society of America Journal, 53 (2): 317-323.
Jarvis, N.J., Bergstrom, L. and Dik, P.E. 1991. Modelling water and solute transport in macroporous soil. II. Chloride breakthrough under non-steady flow. Journal of Soil Science, 42 (1): 7l-81.
Lamy, E., Lassabatere, L., Bechet, B. and Andrieu, H. 2009. Modeling the influence of an artificial macropore in sandy columns on flow and solute transfer. Journal of Hydrology, 376 (3-4): 392–402.
Leung, A.S.E., Gupta, S.C. and Moncrief, J.F. 2000. Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity. Journal of Contaminant Hydrology, 41 (3–4): 283–301.
Li, Y. and Ghodrati, M. 1997. Preferential Transport of solute through soil columns containing constructed macropores. Soil Science Society of America Journal, 61 (5): 1308-1317.
Mori, Y., Fujihara, A. and Yamagishi, K. 2014. Installing artificial macropores in degraded soils to enhance vertical infiltration and increase soil carbon content. Progress in Earth and Planetary Science, 1: 1-30.
Mori, Y. and Hirai, Y. 2014. Effective Vertical Solute Transport in Soils by Artificial Macropore System. Journal of Hazardous, Toxic, and Radioactive Waste, 18 (2): 1-7.
Munyankusi, E., Gupta, S.C., Moncrief, J.F. and Berry, E.C. 1994. Earthworm macropores and preferential transport in a long-term manure applied typic Hapludalf. Journal of Environmental Quality, 23 (4): 773–784.
Pang L., Close, M.E., Watt, J.P.C. and Vincen, K.W. 2000. Simulation of picloram, atrazine, and simazine l-eaching through two New Zealand soils and into groundwater using HYDRUS-2D. Journal of Contaminant Hydrology, 44 (1): 19–46.
Siyal, A.A., van Genuchten, M.Th. and Skaggs, T.H. 2013. Solute transport in a loamy soil under subsurface porous clay pipe irrigation. Agricultural Water Management, 121: 73–80.
Toride, N., Leij, F.j. and van Genuchten, M.Th. 1999. The CXTFIT code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1, Research Rep. 137. U.S. Salinity Lab, Riverside, CA, USA, 119 pp.
White, R.E. 1985. The influence of macropores on the transport of dissolved and suspended matter through soil. Advances in Soil Science, 3: 95-120.