تأثیر آرایش خاک ماسهای لایهای بر ضریب انتشار آلایندهی غیرواکنشگر
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریروژین نگهدار 1 , بهروز مهدی نژادیانی 2
1 - دانشگاه کردستان
2 - دانشگاه کردستان
کلید واژه: انتقال غیرفیکی, آبشویی, الگوریتم استراتژی تکاملی, معادلهی جابجایی انتشار,
چکیده مقاله :
در این تحقیق، فرایند انتقال آلاینده ی غیرواکنش گر از میان خاک های ماسه ای لایه ای و رفتار ضریب انتشار در آرایش های مختلف این خاک ها بررسی شد. آزمایشهای ردیابی شامل آزمایش های آلودگی و آبشویی بود که در یک تانک شن به ابعاد انجام شد. سه نوع خاک ماسه ای همگن (درشت، متوسط و ریز) به عنوان شاهد و شش نوع آرایش لایه ای بررسی گردید. نتایج نشان داد که در خاک های ماسه ای همگن، ضریب انتشار با افزایش اندازه ی ذرات ماسه زیاد شد. بهعنوان مثال، ضرایب انتشار خاک ماسه ای درشت در آزمایش های آلودگی و آبشویی بهترتیب 46/8 و 91/7 برابر بزرگتر از ضرایب انتشار خاک ماسهای ریز بود. در خاک های ماسه ای لایه ای، نوع آرایش و ترتیب لایه ها در هر آرایش بر ضریب انتشار تأثیر داشت. در آزمایش های آلودگی و آبشویی، کمترین مقادیر ضریب انتشار به ترتیب برابر cm2/min 5/12 و cm2/min 16/17 بود که در آرایش عمود با لایه بندی درشت-متوسط-ریز مشاهده شدند. در حالی که بیشترین مقادیر ضریب انتشار در آزمایش های آلودگی و آبشویی به ترتیب برابر cm2/min 56/32 و cm2/min 31/37 بود که در آرایش موازی با لایه بندی درشت-ریز-متوسط (از پایین به بالا) بهدست آمدند. ضرایب انتشار خاک های ماسه ای لایه ای و خاک های ماسه ای همگن تفاوت معنی داری داشتند. فرایند انتقال در خاک های ماسه ای لایهای، در مقایسه با خاک های ماسه ای همگن، انحراف بیشتری از انتقال فیکی داشت.
In this research, the transport process of a non-reactive contaminant through layered sandy soils and dispersion coefficient behavior in different configurations of these soils were investigated. Tracer tests included pollution and leaching experiments conducted in a sandbox with dimensions of 130 cm×10 cm×60 cm. Three types of homogeneous sandy soils (coarse, medium and fine) as a control and six types of layered sandy soils were studied.The results showed that in the homogeneous sandy soils, the dispersion coefficient increased with increasing particle size of sand. For example, the dispersion coefficients of the coarse sandy soil in the pollution and leaching experiments were 8.46 and 7.91 orders of magnitude larger than the dispersion coefficients of the fine sandy soil, respectively. In the layered sandy soils, the type of configuration and the order of layers at each configuration influenced dispersion coefficient. In the pollution and leaching experiments, the least values of dispersion coefficients were equal to 12.50 cm2/min and 17.16 cm2/min, respectively, which were observed in the perpendicular configuration with stratification of coarse-medium-fine. However, the most values of dispersion coefficients in the pollution and leaching experiments were equal to 32.56 cm2/min and 37.31 cm2/min, respectively, which were obtained in the parallel configuration with stratification of coarse-fine- medium (from bottom to top). The dispersion coefficients of the layered sandy soils differed significantly from those of the homogeneous sandy soils. The transport process in the layered sandy soils, compared to the homogeneous sandy soils, had a more deviation from Fickian transport.
بهمنی، ا.، قباییسوق، م.، رضوانی، س.م. و مهدوی نجفآبادی، ع. 1393. بررسی ضریب انتشارپذیری کلریدسدیم در ستونهای آزمایشگاهی تحت تأثیر بافت و طولهای مختلف. مجله محیطشناسی، 41: 317 تا 329.
فراستی، م. و سیدیان، س.م. 1392. اثر فاصلهی انتقال بر انتشارپذیری کلریدسدیم با استفاده از نرمافزار HYDRUS 2D. نشریهی آب و خاک (علوم و صنایع کشاورزی)، 27: 823-831.
قائمیزاده، ف. و بهمنی، ا. 1393. ارزیابی تأثیر بافت خاک و فواصل انتقال بر میزان انتشارپذیری مادهی ردیاب پایدار با استفاده از مدلهای انتقال املاح. مجله محیط زیست طبیعی، منابع طبیعی ایران، 67: 449 تا 460.
معروفپور، ع.، کشکولی، ح.ع.، معاضد، ه. و محمد ولی سامانی، ح. 1384. بررسی وابستگی انتشارپذیری خاک به ضخامت آن در خاکهای ماسهای همگن اشباع. مجله علوم دانشگاه شهید چمران، 14: 16 تا 29.
Al-Tabbaa, A., Ayotamuno, J.M. and Martin, R.J. 2000. One–dimensional solute transport in stratified sands at short travel distances. Journal of Hazardous Materials, 73:1-15.
Ayvaz, M.T., Karahan, H. and Aral, M.M. 2007. Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. Journal of Hydrology, 343: 1-15.
Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing, New York, 764 pp.
Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M., 2000. Application of a fractional advection–dispersion equation. Water Resources Research, 36:1403–1412.
Engelbrecht, A.P. 2007. Computational Intelligence: An Introduction. John Wiley & Sons Ltd, The Atrium, 597 pp.
Fallico, C., Chidichimo, F. and Straface, S. 2012. Solute dispersion in porous media at different transport velocities and distances. International Water Technology Journal, 2(2): 100-109.
Gao, G., Zhan, H., Feng, S., Huang, G. and Mao, X. 2009. Comparison of alternative models for simulating anomalous solute transport in a large heterogeneous soil column, Journal of Hydrology, 377: 391–404.
Gelhar, L.W., Welty, C. and Rehfeldt, K.R. 1992. A critical review of data on field‐scale dispersion in aquifers. Water resources research, 28: 1955-1974.
Huang, G., Huang, Q. and Zhan, H. 2006. Evidence of one-dimensional scale-dependent fractional advection–dispersion. Journal of contaminant hydrology, 85: 53-71.
Huang, K., Toride, N., and van Genuchten, M.Th. 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transport in Porous Media, 18: 283-302.
Kim, H.N., Walker, S.L., and Bradford, S.A 2010. Coupled factors influencing the transport and retention of Cryptoporidium parvum oocysts in saturated porous media. Water Research, 44: 1213-1223.
Leij, F.J and van Genuchten, M.Th. 1995. Approximate analytical solutions for solute transport in two-layer porous media. Transport in Porous Media, 18: 65-85.
Levy, M. and Berkowitz, B. 2003. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. Journal of contaminant hydrology, 64: 203-226.
Loague, K. and Green, R. 1991. Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7: 51-73.
Moradi, S., Razi, P. and Fatahi, L. 2011. On the application of bees algorithm to the problem of crack detection of beam-type structures. Computer and Structures, 89: 2169-2175.
Pang, L. and Hunt, B. 2001. Solutions and verification of a scale-dependent dispersion model. Journal of Contaminant Hydrology, 53: 21-39.
Pickens, J.F. and Grisak, G. E. 1981. Scale-dependent dispersion in a stratified granular aquifer. Water Resources Research, 17: 1191-1211.
Porubcan, A.A. and Xu, S. 2011. Colloid straining within saturated heterogeneous porous media. Water Research, 45: 1796-1806.
Sharma, P.K., Sawant, V.A., Shukla, S.K. and Khan, Z. 2014. Experimental and numerical simulation of contaminant transport through layered soil. International Journal of Geotechnical Engineering, 8: 345-351.
Sternberg, S. 2004. Dispersion measurements in highly heterogeneous laboratory scale porous media. Transport in Porous Media, 57: 107-124.
Xiong, Y., Huang, G. and Huang, Q. 2006. Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk. Journal of contaminant hydrology, 86:163-175.
Zhang, X. and Wu, Y. 2016. Laboratory experiments and simulations of MTBE transport in layered heterogeneous porous media. Environmental Earth Science, doi: 10.1007/s12665-016-5648-8.