طراحي سيستم آبياري هوشمند مبتني بر اينترنت اشياي شناختي با رويکرد استدلال مبتني بر مورد فازي براي بهينهسازي مصرف آب در کشاورزي
محورهای موضوعی : آبیاری هوشمند
سیدواحد موسوی
1
,
رضا رادفر
2
*
,
سعید ستایشی
3
1 - گروه مديريت فناوري اطلاعات، واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران،ايران.
2 - گروه مديريت صنعتي، واحد علوم و تحقيقات، دانشگاه آزاد اسلامي، تهران ،ايران.
3 - گروه مهندسي انرژي، دانشگاه اميرکبير،تهران، ايران.
کلید واژه: آبياري هوشمند, اينترنت اشياي شناختي, استدلال مبتني بر مورد فازي, بهينه سازي مصرف آب, مديريت منابع آب,
چکیده مقاله :
کمبود منابع آب و فشار روزافزون بر بخش کشاورزي، ضرورت بهکارگيري فناوريهاي نوين براي بهينهسازي مصرف آب را بيش از پيش آشکار کرده است. اين پژوهش با هدف طراحي يک سيستم آبياري هوشمند مبتني بر اينترنت اشياي شناختي و رويکرد استدلال مبتني بر مورد فازي، به منظور بهبود بهرهوري و مديريت منابع آب در کشاورزي مدرن انجام شد. سيستم پيشنهادي با استفاده از دادههاي جمعآوريشده از حسگرها و پردازش آنها توسط متدولوژي استدلال مبتني بر مورد فازي، تصميمات آبياري را بهصورت هوشمند و پويا تعيين ميکند. کارايي اين سيستم با دو روش متداول آبياري، شامل آبياري سطحي و آبياري قطرهاي(واکنشي)، بر اساس معيار بهينه سازي در مصرف آب، در شرايط واقعي باغ نخل خرما مقايسه شد. تحليل نتايج نشان داد که سيستم هوشمند پيشنهادي با کاهش قابلتوجه مصرف آب و افزايش بهرهوري نسبت به دو روش ديگر، عملکرد بهتري ارائه ميدهد. همچنين اين سيستم با قابليت انعطافپذيري و سازگاري با شرايط محيطي متغير، امکان مديريت دقيق و بهينه منابع را فراهم ميکند. به کارگيري سيستم آبياري هوشمند مبتني بر اينترنت اشياي شناختي (تفکرآميز)ميتواند بهعنوان يک راهکار پايدار و کارآمد براي مديريت منابع آب در کشاورزي مورد استفاده قرار گيرد.
The shortage of water resources and the increasing pressure on the agricultural sector have made the need to use new technologies to optimize water consumption more apparent than ever before. This research aimed to design a smart irrigation system based on the Internet of Things and a fuzzy case-based reasoning approach, in order to improve the productivity and management of water resources in modern agriculture. The proposed system determines irrigation decisions intelligently and dynamically by using data collected from sensors and processing them by a fuzzy case-based reasoning methodology. The efficiency of this system was compared with two conventional irrigation methods, including surface irrigation and drip irrigation (reactive), based on the criterion of optimization in water consumption, in real conditions of a date palm orchard. Analysis of the results showed that the proposed smart system provides better performance by significantly reducing water consumption and increasing productivity compared to the other two methods. This system also provides the ability to be flexible and adaptable to changing environmental conditions, allowing for precise and optimal management of resources. The use of a smart irrigation system based on the cognitive Internet of Things (IoT) can be used as a sustainable and efficient solution for managing water resources in agriculture.
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59.
Abdikadir, N. M., Hassan, A. A., Abdullahi, H. O., & Rashid, R. A. (2023). Smart irrigation system. International Journal of Electrical and Electronics Engineering, 10(8), 224-234
Barker, J.B.; Franz, T.E.; Heeren, D.M.; Neale, C.M.U.; Luck, J.D. (2017).Soil water content monitoring for irrigation management: A geostatistical analysis. Agric. Water Manag., 188, 36–49
Blanco, V., Willsea, N., Campbell, T., Howe, O., & Kalcsits, L. (2023). Combining thermal imaging and soil water content sensors to assess tree water status in pear trees. Frontiers in Plant Science, 14, 1197437.
Darshna, S., Sangavi, T., Mohan, S., Soundharya, A., & Desikan, S. (2015). Smart irrigation system. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 10(3), 32-36.
Davis, S. L., & Dukes, M. D. (2010). Irrigation scheduling performance by evapotranspiration-based controllers. Agricultural water management, 98(1), 19-28
Davis, S. L., Dukes, M. D., & Miller, G. L. (2009). Landscape irrigation by evapotranspiration-based irrigation controllers under dry conditions in Southwest Florida. Agricultural Water Management, 96(12), 1828-1836.
Devanand Kumar, G., Vidheya Raju, B., & Nandan, D. (2020). A review on the smart irrigation system. Journal of Computational and Theoretical Nanoscience, 17(9-10), 4239-4243.
Dutta, S., Rakshit, S., & Chatterjee, D. (2020). Use of artificial intelligence in Indian agriculture. Food and Sci. Rep, 1, 65-72.
FAO (2003). Water at a Glance . Available Online At: https://www.fao.org/4/ap505e/ap505e.pdf
FAO (2021) World Food and Agriculture – Statistical Yearbook 2021, https://doi. org/10.4060/cb4477en.
FAO (2015) Water at a Glance: the relationship between water, agriculture, food security and poverty. Rome. 15 pp. https://www.fao. org/3/ap505e/ap505e.pdf
FAO (2022) AQUASTAT - FAO’s global information system on water and agriculture. Available at: https://www.fao.org/aquastat/en/. Accessed on 10 October, 2022
FAO .(2024). Water scarcity, Available (Online) At : https://www.fao.org/land-water/water/water-scarcity/en/
Gamal, Yomna & Soltan, Ahmed & Said, Lobna & Madian, Hazem & Radwan, Ahmed. (2023). Smart Irrigation Systems: Overview. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3251655.
García-Tejero, I.F.; Ortega-Arévalo, C.J.; Iglesias-Contreras, M.; Moreno, J.M.; Souza, L.; Tavira, S.C.;Durán-Zuazo, V.H. (2018)Assessing the crop-water status in almond (Prunus dulcis mill.) trees via thermal imaging camera connected to smartphone. Sensors, 18, 1050.
Ghrab, Mohamed, et al. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate." Agricultural Water Management 123 (2013): 1-11.
González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.;Soto-Valles, F. (2019). Design and calibration of a low-cost SDI-12 soil moisture sensor. Sensors, 19, 491.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2013). Automated irrigation system using a wireless sensor network and GPRS module. IEEE transactions on instrumentation and measurement, 63(1), 166-176.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information systems, 47, 98-115.
Jain, R. K. (2023). Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agricultural Technology, 4, 100215.
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1-12.
Krishnan, R. S., Julie, E. G., Robinson, Y. H., Raja, S., Kumar, R., & Thong, P. H. (2020). Fuzzy logic based smart irrigation system using internet of things. Journal of Cleaner Production, 252, 119902
Leh, N. A. M., Kamaldin, M. S. A. M., Muhammad, Z., & Kamarzaman, N. A. (2019, October). Smart irrigation system using internet of things. In 2019 IEEE 9th international conference on system engineering and technology (ICSET) (pp. 96-101). IEEE.
Lowe, M., Qin, R., & Mao, X. (2022). A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9), 1384.
Monica, M., Yeshika, B., Abhishek, G. S., Sanjay, H. A., & Dasiga, S. (2017, October). IoT based control and automation of smart irrigation system: An automated irrigation system using sensors, GSM, Bluetooth and cloud technology. In 2017 International Conference on recent innovations in signal processing and embedded systems (RISE) (pp. 601-607). IEEE.
Navarro-Hellín, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131.
Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J. A., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64-
Patil, C., Aghav, S., Sangale, S., Patil, S., & Aher, J. (2021). Smart irrigation using decision tree. In Proceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2020 (pp. 737-744). Springer Singapore.
Ragab, Mohammed Ali, Mo’men M. Badreldeen, Abdelrahman Sedhom, and Wael M. Mamdouh. "IOT based smart irrigation system." International Journal of Industry and Sustainable Development 3, no. 1 (2022): 76-86.
Ray, S., & Majumder, S. (2024). Water management in agriculture: Innovations for efficient irrigation. Modern Agronomy; Sil, P., Chhetri, P., Majumder, S., Santosh, DT, Eds, 169-185.
Saraf, S. B., & Gawali, D. H. (2017, May). IoT based smart irrigation monitoring and controlling system. In 2017 2nd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) (pp. 815-819). IEEE.
Schreier, H. (2014, May). Water and agriculture: harvesting water before harvesting the crop. Institute for Resources and Environment, University of British Columbia, Vancouver, British Columbia book chapter 17, page 1-17
Shaikh, T. A., Rasool, T., & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198, 107119.
Sinha, C., & Gupta, P. (2024). Smart Irrigation System using Neural Network. International Journal in Engineering Sciences, 2(06), 1-1.
Statistics Canada (2002). Agricultural Census Data for 2001, Statistics Canada, Ottawa
Subramani, C., Usha, S., Patil, V., Mohanty, D., Gupta, P., Srivastava, A. K., & Dashetwar, Y. (2020). IoT-based smart irrigation system. In Cognitive Informatics and Soft Computing: Proceeding of CISC 2019 (pp. 357-363). Springer Singapore
Torrecillas, A., et al. "Strategies for drought resistance in leaves of two almond cultivars." Plant Science 118.2 (1996): 135-143.
Visconti, F., de Paz, J. M., Martínez, D., & Molina, M. J. (2014). Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agricultural Water Management, 132, 111-119.
Watson, I., & Marir, F. (1994). Case-based reasoning: A review. The knowledge engineering review, 9(4), 327-354.
Zhai, Z.Y., Ortega, J.-F.M (2020a) Applying case-based reasoning and a learning-based adaptation strategy to irrigation scheduling in grape farming, Computers and Electronics in Agriculture, Volume 178 , 105741, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2020.105741.
Zhai, Z.Y., Ortega, J.-F.M (2020b) contributions to Case-Based Reasoning Enabled Decision Support System for Smart Agriculture.Ph.D . Dissertation thesis.
Zhang, Q. , (2015) Precision Agriculture Technology for Crop Farming, 1st ed.; CRC Press and Taylor & Francis Group: Boca Raton, FL, USA; ISBN 978-1-4822-5107-4.
Zhang, Y. (2019). The role of precision agriculture. Resource Magazine, 26(6), 9-9.