Regional Evaluation of Hydrometric Monitoring Stations through Using Entropy Theory
Subject Areas : Irrigation and Drainageسمیه خلیفه 1 * , ابراهیم خلیفه 2
1 - مهندسی منابع آب، گروه مهندسی آب، دانشگاه شهید باهنر کرمان،ایران.
2 - گروه آب، دانشگاه صنعتی خواجه نصیرالدین طوسی،تهران،ایران
Keywords: Discrete entropy, hydrometric station, information indices, discrete intervals, آنتروپی گسسته, ایستگاه هیدرومتری, شاخص اطلاعات, فاصله کلاسبندی,
Abstract :
Proper design and operation of monitoring systems for water resources management is one of themost important issues of water quality and quantity and accuracy and adequacy of data. The properevaluation of these data has a determining role in the correctand consistent decisions in the areacovered by the system. Therefore, determining proper distribution and number of monitoringnetwork stations and evaluation of theadequacy of existing network stations are needed to eliminateunnecessary stations and as a result decreasing costs of data productionthat are importantchallenges in the future. In this study, a new approach, based on this theoryof regional value ofhydrometric stations in Bakhtegan- Maharlu watershed has been investigated. In this case, usingdiscrete entropy theory, existing limitations in theprevious studies were removed and consideringthe indices of total information sent by the station S(i), total information received by the stationR(i) and total net information by the station N(i), the monitoring network has been assessed. Theresults of sensitivity analysis showed that values of entropy indices are sensitive to variation ofdata-classification interval. The calculated values of R(i) and S(i)are equivalent completely andeach station received as much information as it sent to other stations. In addition, with regard toacceptable results by Storeajse relation, using this equation to determine the appropriate number ofclasses is recommended. The obtained results showed that 4 out of 14 hydrometric Stations are incritical conditions and it is recommendedthat they should be removed from the network.
بازرگان لاری، ع. (1378). آمار کاربردی. انتشارات دانشگاه شیراز، شیراز.ص43.
کریمی حسینی، آ. و بزرگ حداد، ا. (1388). ارزیابی و طراحی شبکه ایستگاههای بارانسنجی حوضه باتلاق گاوخونی با استفاده از تئوری آنتروپی و الگوریتم ژنتیک. دهمین سمینار سراسری آبیاری و کاهش تبخیر، دانشگاه شهید باهنر کرمان، ص62.
معصومی، ف. و کراچیان، ر. (1387). بهینهسازی مکانیابی ایستگاههای پایش کیفی منابع آب زیرزمینی با استفاده از تئوری آنتروپی. آب و فاضلاب، شماره 65، ص 12-2.
Chen, Y.C., Wei, C. and Yeh, H.C. (2008). Rainfall network design using kriging and entropy. Hydrological Processes, 22, pp. 340-346.
Karamouz, M., Hafez, B. and Kerachian, R. (2005). Water quality monitoring network for river systems using geostatistical methods. Proceedings of ASCE-EWRI World Water and Environmental Resources Congress, Alaska, USA.
Kawachi, T. (2001). Rainfall entropy for delineation of water resources zones in Japan. Journal of Hydrology, 246, pp. 36-44.
Markus, M., Knapp, H. V. and Tasker, G. D. (2003). Entropy and generalized least square methods in assessment of the regional value of stream gages. Journal of Hydrology, 283, pp. 107-121.
Mishra, A.K. and Coulibaly, P. (2010). Hydrometric network evaluation for Canadian watersheds. Journal of Hydrology, 380, pp. 420-437.
Mogheir, Y. and Singh, V. P. (2002). Application of information theory to groundwater quality monitoring system. Water Resources Management, 16(1), pp. 37- 49.
Mogheir, Y. and Singh,V.P. (2003). Specification of information needs for groundwater management planning in developing countries. Groundwater Hydrology, 2, pp. 3-20
Mogheir,Y., Lima, J.L. and Singh, V. P. (2004). Characterizing the spatial variability of groundwater quality using the entropy theory. Hydrological Process, 18, pp. 2165-2179.
Mondal, N. and Singh, V. P. (2012). Evaluation of groundwater monitoring network of Kodaganar River basin from Southern India using entropy. Environmental Earth Sciences, 66(4), pp. 1183-1193.
Sarlak, N. and Sorman, A. (2006). Evaluation and selection of streamflow network stations using entropy methods. Turkish J. Eng. Environ. Sci., 30, pp. 91-100.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379-423.
Valdes, J. B., Rodriguez-Iturbe, I. and Vicens, G. J. (1975). A Bayesian Approach to Multivariate Hydrologic Synthesis. Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Report No. 201, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.