Evaluation of different infiltration equations under some soil textures presented in HYDRUS model
Subject Areas : Irrigation and Drainage
1 -
Keywords: Horton, Initial soil water, Kostiakov-Lewis, Philip, Water head, بار آبی, رطوبت اولیه خاک, کوستیاکوف-لوئیس, فیلیپ و هورتون,
Abstract :
Infiltration is one of the important parameters in the management and design of irrigation and drainage systems. Infiltration measurement problems make it reasonable to estimate it using simulation models. The main purpose of this study was to investigate the performance of different infiltration equations (Kostiakov-Lewis, Philip and Horton) in surface irrigation using the HYDRUS model. For this purpose, one-dimensional and two-dimensional cumulative infiltration was simulated by changing the initial soil water (before irrigation) and water head (during irrigation) using the Richards equation (HYDRUS model). Five soil textures based on the HYDRUS model database were considered for infiltration simulation. The cumulative infiltration depth, with respect to time, was used to develop different infiltration equations using the Microsoft Excel 2016 (Solver tool). Investigation of the performance of different infiltration equations in different simulations of surface irrigation showed that The Kostiakov-Lewis and Philip equations penetration with absolute total error of 1.5% and 3.5%, respectively, had the best and worst performance in estimating the amount of penetration. According to the obtained results, it is suggested to use Kostiakov-Lewis infiltration equation in surface irrigation systems, which has the best performance in estimating the amount of infiltration. Infiltration is one of the important parameters in the management and design of irrigation and drainage systems. Infiltration measurement problems make it reasonable to estimate it using simulation models. The main purpose of this study was to investigate the performance of different infiltration equations (Kostiakov-Lewis, Philip and Horton) in surface irrigation using the HYDRUS model. For this purpose, one-dimensional and two-dimensional cumulative infiltration was simulated by changing the initial soil water (before irrigation) and water head (during irrigation) using the Richards equation (HYDRUS model). Five soil textures based on the HYDRUS model database were considered for infiltration simulation. The cumulative infiltration depth, with respect to time, was used to develop different infiltration equations using the Microsoft Excel 2016 (Solver tool). Investigation of the performance of different infiltration equations in different simulations of surface irrigation showed that The Kostiakov-Lewis and Philip equations penetration with absolute total error of 1.5% and 3.5%, respectively, had the best and worst performance in estimating the amount of penetration. According to the obtained results, it is suggested to use Kostiakov-Lewis infiltration equation in surface irrigation systems, which has the best performance in estimating the amount of infiltration.
بایبوردی، م. (1388). فیزیک خاک. انتشارات دانشگاه تهران، چاپ نهم، 674 ص.
پرچمی عراقی، ف.، میر لطیفی، س. م.، قربانی دشتکی، ش. و مهدیان، م. ح. (1389). ارزیابی برخی مدلهای نفوذ آب به خاک در برخی کلاسهای بافتی و کاربریهای اراضی. نشریه آبیاری و زهکشی ایران، دوره 2، شماره 4، ص 193-203.
جوادی، ع.، مشعل، م. و ابراهیمیان، ح. (1392). مقایسه کارایی برخی از معادلات نفوذ در شرایط مختلف اولیه و مرزی. مجله علمی تحقیقات آب، دوره یک، شماره یک، ص 40-29.
جوادی، ع.، مشعل، م. و ابراهیمیان، ح. (1393). ارزیابی عملکرد و حساسیت معادلات نفوذ نسبت به شرایط اولیه و مرزی مختلف در آبیاری جویچهای. نشریه پژوهش آب در کشاورزی، ب، دوره 28، شماره 4، ص 799-787.
زارع ابیانه، ح.، خسرایی، ح.، ابراهیمی پاک، ن.ع.، تافته، آ. و جوزی، م. (1398). انتخاب مدل بهینه نفوذ آب در خاک (مطالعه موردی: اراضی جهاد نصر استان خوزستان). مجله مدیریت آب و آبیاری، دوره 9، شماره 2، ص. 304-291.
محمودیان شوشتری، م. (1376). پارامترهای معادله نفوذ کوستیاکوف-لوئیس معادل با پارامترهای معادل نفوذ SCS. مجله خاک و آب، جلد 11، شماره 1.
مصطفیزادهفرد، ب. و موسوی، ف. (1393). آبیاری سطحی: تئوری و عمل (ترجمه). نوشته دبلیو. آر. واکر و گ. وی. اسکوگربو، چاپ پنجم، انتشارات کنکاش. 582 ص.
Chari, M.M., Poozan, M.T. and Afrasiab, P. (2021). Modeling infiltration in surface irrigation with minimum measurement (study of USDA–NRCS intake families). Modeling Earth Systems and Environment, 7(1), pp: 433-441.
Duan, R., Fedler, C. B. and Borrelli, J. (2011). Field evaluation of infiltration models in lawn soils. Irrigation Science, 29(5), pp: 379-389.
Glass, J., Simunek, J. and Stefan, C. (2020). Scaling factors in HYDRUS to simulate a reduction in hydraulic conductivity during infiltration from recharge wells and infiltration basins. Vadose Zone Journal, pp: 1-19.
Javadi, A., Shayannejad, M., Ebrahimian, H. and Ghorbani-Dashtaki, S. (2021) Simulation modeling of border irrigation performance under different soil texture classes and land uses. Modeling Earth Systems and Environment latest issue.
Mirzaee, S., Zolfaghari, A. A., Gorji, M., Dyck, M. and Ghorbani Dashtaki, S. (2014). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes. Archives of Agronomy and Soil Science, 60(5), pp: 681-693.
Simunek, J., Van Genuchten, M. T. and Sejna, M. (2006). The HYDRUS software package for simulating two and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, 1.
Simunek, J., Sejna, M. and Van Genuchten, M. T. (2012). The HYDRUS-1D software package for simulating the one–dimensional movement of water, heat, and multiple solutes in variably saturated media, Version 4.15, Department of Environment Sciences, University of California Riverside, Riverside, California, USA.
Zhang, Y., Wu, P., Zhao, X. and Li, P. (2012). Evaluation and modelling of furrow infiltration for uncropped ridge–furrow tillage in Loess Plateau soils. Soil Research, 50(5), pp: 360-370.
Zolfaghari, A. A., Mirzaee, S. and Gorji, M. (2012). Comparison of different models for estimating cumulative infiltration. International Journal of Soil Science, 7(3), pp: 108-115.