ارزیابی کیفیت آب رود کارون با استفاده از شبیه استنتاج فازی
محورهای موضوعی : برگرفته از پایان نامهمیثم ودیعتی 1 , محمد نخعی 2 , وهاب امیری امرایی 3 , علی میرعربی 4
1 - دانشجوی دکتری دانشگاه تبریز
2 - دانشیار دانشگاه خوارزمی تهران
3 - دانشجوی دکتری دانشگاه خوارزمی تهران
4 - کارشناس مرکز تحقیقات کارست ایران
کلید واژه: شبیه استنتاج فازی, کیفیت آب رود, رود کارون, قوانین فازی,
چکیده مقاله :
در سالهای اخیر، روشهایی با مبنای منطق فازی تطبیق یافتهاند تا عدم قطعیت را همراه با مسائل زیست محیطی در نظر گیرند. با توجه به اینکه در روشهای مرسوم از ردهبندیهای نامناسب برای شاخصهای کیفیت آب استفاده میگردید، سعی شده است تا شاخص مناسبتری، که براساس روش فازی کیفیت آب رود را اندازهگیری میکند، معرفی گردد. با استفاده از منطق فازی میتوانیم نظر کارشناس خبره را در طراحی شبیه اعمال کرده و کمبودهای روشهای قبلی را پوشش دهیم. در این پژوهش، روش شبیه استنتاج فازی جهت ارزیابی کیفیت آب رود کارون سنجیده شده است. به همین منظور، از دادههای اندازه گیری شدهی 17 ایستگاه در مسیر رود مزبور در سال آبی 89-1388 بهره بردیم. مهمترین فراسنجهای تأثیر گذار بر کیفیت آب رود شامل اکسیژن محلول، اکسیژن خواهی بیوشیمیایی 5 روزه، نیترات، کلرور، و هدایت الکتریکی استفاده شد. در نهایت، با استفاده از شبیه استنتاج فازی، نتایج کیفیت آب رود کارون، که در شبیه به سه ردهی خوب، بد و متوسط طبقهبندی شده بودند، حاصل گردید. نتایج پژوهش حاضر پیشنهاد میدهد که شبیه استنتاج فازی میتواند به عنوان روش مناسبی جهت ارزیابی کیفیت آب رود در نظر گرفته شود. بدین ترتیب، این روش ابزار جایگزین و مناسبی را معرفی میکند که میتواند در توسعهی مؤثر برنامههای مدیریت کیفیت آب مورد بهرهوری قرار گیرد.
In recent years, the fuzzy-logic-based methods have been developed to consider the intrinsic uncertainty in environmental problems. Noting that the inappropriate classifications that traditional methods apply to develop an index, we intend to develop a better index that measures the river water quality based on the fuzzy logic. Using this approach enabled us to benefit from experts' knowledge in designing the model and mitigating the shortages of previous methods. In the present study, a methodology based on the Fuzzy Inference Model to assess the river’s water quality is used. The potential application of the fuzzy model has been tested with a case study for the Karoon River. Therefore, a data set collected from 2008 to 2009 from seventeen hydrometric stations along the Karoon River has been used. The most important parameters that affect the water quality namely DO, BOD5, NO3-, Cl-, and EC has been used. Finally, using the Fuzzy Inference Model, the Karoon River’s water quality was classified in three categories: good, moderate and poor. Results of the present study suggest that the fuzzy inference model can be considered as a comprehensive approach for assessing the river water quality in different seasons. Therefore, this methodology offers a suitable and alternative tool to be used in developing effective water management plans.
4. Bardossy, A., A. Bronstert, and B. Merz.
1995. 1. 2 and 3dimensional modeling of
water movement in the unsaturated soil
matrix using a fuzzy approach. Adv. Water
Resour. 18: 237-251
5. Cude, C. 2001. Oregon water quality
index: A tool for evaluating water quality
management effectiveness. J. Am. Water.
Resour. Associ. 37:125 –37.
6. Deque, W.A., N.F. Huguet, J.L. Domingo,
and M. Schuhmacher. 2006. Assessing
water quality in rivers with fuzzy inference
system: A case study. Environ. Int. 32:
733–742.
7. Dixon, W., and B. Chiswell. 1996.
.Reviewof aquaticmonitoring program
design. Water Res. 30: 1935–1948.
8. Fernández, C., A.M. Fernández, C.T.
Domínguez, and B.L. Santos. 2006.
Hydrochemistry of northwest Spain ponds
and relationships to groundwater. J. Ecol.
Iberian Inland Waters. 25: 433-452.
9. Gokceoglu, C. 2002. A fuzzy triangular
chart to predict the uniaxial compressive
strength of the Ankara agglomerates from
their petrographic composition. Eng. Geol.
66: 39–51.
10. Iphar, M., and R.M. Goktan. 2006. An
application of fuzzy sets to the dig ability
index rating method for surface mine
equipment selection. Int. J. Rock Mech.
Min. Sci. 43: 253–266.
11. Li, Y.P., G.H. Huang, Y.F. Huang, and
H.D. Zhou. 2009. A multistage fuzzystochastic programming model for
supporting sustainable water-resources
allocation and management, Environ. Mod.
Software 24: 786-797.
12. Liou, S., and S.L. Lo. 2004. A fuzzy Index
Model for Tropic Status Evolution of
Reservoir Waters. Water Resour. 96: 35-
52.
13. Liou, S., S. Lo, and S. Wang. 2004. A
generalized water quality index for
Taiwan. Environ. Monit. Assess. 96: 35–
52.
14. Little, K.W., and R.E. Williams. 1975.
Least-squares calibration of QUAL2E.
Water Environ. Res. 64: 179-18.
15. Mahapatra, S.S., S. Kumar, B. Nanda, and
K. Panigrahy. 2001. A Cascaded Fuzzy
Inference System for Indian River water
quality prediction. Adv. Eng. Software 42:
787–796.
16. Mamdani, H., and S. Assilian. 1975. An
experiment in linguistic synthesis with a
fuzzy logic controller. Int. J. Man–
Machine Stud. 71: 1–13.
17. Mitchell, M.K., and W.B. Stapp. 1996.
Field manual for water quality monitoring:
an environ-mental education program for
schools. Dexter, Michigan: ThomsonShore Inc. 277p.
18. Mojahedi, S.A., and J. Attari. 2009. A
Comparative Study of Water Quality
Indices for Karun River. World Environ.
Water Res. Cong. Kansas City، Missouri.
19. Naddafi, K., H. Honari, and M. Ahmadi.
2007. Water quality trend analysis for the
Karoon River in Iran. Environ. Monit.
Assess. 134: 305–312
20. Ross, T. 1995. Fuzzy logic with
engineering applications McGraw-Hill.
New York. 648 p.
21. Said, A., D. Stevens, and G. Selke. 2004.
An innovative index for evaluating water
quality in streams. Environ. Manage. 34:
406 –14.
22. Shrestha, S., and F. Kazama. 2007.
Assessment of surface water quality using
multivariate statistical techniques, a case
study of the Fuji river basin, Japan.
Environ. Model. Software 22: 464–475.
23. Sonmez, H., E. Tuncay, and C. Gokceoglu.
2004. Models to predict the uniaxial
compressive strength and the modulus of
elasticity for agglomerate. Int. J. Rock
Mech. Min. Sci. 41: 717–729.
24. Soulsby, C., C. Gibbins, A.J. Wade, R.
Smart, and R. Helliwell. 2002. Water
quality in the Scottish uplands: A
hydrological perspective on catchment
hydrochemistry. Sci. Total Environ. 294:
73–94.