ارائهی رویکرد احتمالاتی ارزیابی آثار تغییر آب و هوا بر بدهی رود ایدوغموش، آذربایجان شرقی
محورهای موضوعی : برگرفته از پایان نامهپریسا سادات آشفته 1 , امید بزرگحداد 2
1 - دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران
2 - دانشیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران،
کلید واژه: تغییر آب و هوا, رویکرد احتمالاتی, معیارهای عملکرد,
چکیده مقاله :
در این تحقیق، بهمنظور تحلیل آثار منفی پدیدهی تغییر آب و هوا، با ارائهی رویکرد جدید احتمالاتی به ارزیابی اثرات مزبور بر جریان رود پرداخته شده است. برای تولید نمایشنامهی آب و هوای در دورههای آتی، شبیه HadCM3 تحت نمایشنامهی انتشار A2 بهکار گرفته میشود. با معرفی گروههای زمانی متغیرهای آب و هوای در دورههای آتی به شبیه آبشناسی IHACRES، نمایشنامهی شبیهسازی جریان بلندمدت تولید میشود. با برازش توزیعهای مختلف آماری بر روانابهای تولیدی و با استفاده از آزمونهای نکویی برازش، مناسبترین توزیع آماری در هر ماه انتخاب و فراسنجهای آماری مربوطه استخراج و با فراسنجهای آماری رواناب حوضه در دورهی پایه مقایسه میشوند. نتایج نشان میدهند که متوسط رواناب سالانهی بلندمدت در سه دورهی آتی نسبت به دورهی پایه، کاهش مییابد. بهرغم کاهش حجم کل رواناب در دورههای آتی نسبت به دورهی پایه، این کاهش به جریانهای متوسط و زیاد مرتبط گردیده و در جریانهای کم، حجم کل رواناب سه دورهی آتی نسبت به دورهی پایه، بهترتیب به اندازه 47، 41 و 14 درصد افزایش مییابد. برای بررسی بیشتر ارزیابی آثار ضروری است همبستگی گروه زمانی با استفاده از احتمال انتقال جریان نیز مورد بررسی قرار گیرد. پس از گسستهسازی جریان رود، بهمنظور مقایسهی احتمال انتقال جریان در هر یک از دورههای آتی با جریان دورهی پایه در هر ماه، از معیارهای عملکرد استفاده میشود. این رویکرد در رود آیدوغموش، آذربایجان شرقی بهکار گرفته شد. نتایج حاصله نشان از پایین بودن ضریب همبستگی و بالا بودن شاخصهای خطا دارند.
A new probabilistic approach was adapted to the negative impact of climate on stream flow. To generate climate change scenarios in the future under the A2 emission scenario, the HadCM3 model was employed. By introducing climatic variable time series in future periods to the IHACRES hydrologic model, long-term stream flow simulation scenarios were produced. By fitting statistically different distributions on the runoff produced by using a goodness-of-fit test, the most appropriate statistical distribution for each month was chosen and relevant statistical parameters were extracted and compared with statistical parameters of the runoff in the base period. Results show that the long-term annual runoff average in the three future periods compared to the base period. Despite the reduction in the total runoff volume in the future periods will decrease compared to the baseline period, the decrease is related to the medium and high flows. In low flows, the total runoff volume for future periods compared to the baseline period will increase 47, 41, and 14%, respectively. To further assess the impact of annual average runoff on flows, it is necessary to examine correlation of time series using the stream flow transition probability. To compare the stream flow transmission probability in each of the future periods with base period stream flow in each month, stream flow was discretized and performance criteria were used. This approach was adapted for the Aidoghmoush River, East Azerbaijan. Results indicated a low coefficient of correlation and a high error indicator.
3. Acharya, A., T.C. Piechota, and G. Tootle.
2011. Quantitative assessment of climate
change on the hydrology of the North
Platte River watershed, Wyoming. J.
Hydrol. Eng. doi: 10.1061/ (ASCE)
HE.1943-5584.0000543.
4. Diaz-Nieto, J., and R.L Wilby. 2005. A
comparison of statistical and climate
change factor methods: impacts on low
flows in the River Thames, United
Kingdom. Climatic Change. 69: 245–268.
5. Ekström, M., B. Hingray, A. Mezghani,
and P.D. Jones. 2005. Regional climate
model data used within the SWURVE
project 2: addressing uncertainty in
regional climate model data for five
European case study areas. Hydrol. Earth
Syst. Sci. 11: 1085-1096.
6. Hu, T.S., K.C. Lam, and S.T Ng. 2001.
River flow time series prediction with a
range dependent neural network. Hydrol.
Sci. J. 46: 729-745.
7. IPCC (2008). Climate change and water.
Cambridge University Press.
8. Jakeman, A.J., and G.M. Hornberger.
1993. How much complexity is warranted
in a rainfall-runoff model? Water Resour.
Res. 29(8): 2637-2649.
9. Kite, G.W. 1977. Frequency and risk
analysis in hydrology. Water Resources
Publication. Fort Collins, Colorado. 224p.
10. Lin, J.Y., C.T. Cheng, and K.W Chau.
2006. Using support vector machines for
long-term discharge prediction. Hydrol.
Sci. J. 51: 599-612.
11. Littlewood, I.G., K. Down, J.R. Parker,
and D.A Post. 1997. IHACRES:
Catchment-scale rainfall streamflow
modelling (PC version) Version 1.0 - April
1997. Institute of Hydrology, Centre for
Ecology and Hydrology, Wallingford,
Oxon, UK.
http://www.nwl.ac.uk/ih/www/products/ms
wihacres.html.
12. Lorena, L., V. Leonardo, R. Enrique, and
L. Goffredi. 2010. Basin-scale water
resources assessment in Oklahoma under
systematic climate change scenarios using
a fully distributed hydrologic model. J.
Hydrol. Eng. 15:107-118.
13. Moriasi, D.N. 2007. Model evaluation
guidelines for systematic quantification of
accuracy in watershed simulations. Trans.
ASABE. 50: 885-900.
14. Wilby, R.L., and I. Harris. 2006. A
framework for assessing uncertainties in
climate change impacts: Low flow
scenarios for the River Thames, UK. Water
Resour. Res. 42: 1-10.
15. Traynham, L., R. Palmer, and A Polebitski.
2011. Impacts of future climate conditions
and forecasted population growth on water
supply systems in the Puget Sound Region.
J. Water Resour. Plan. Manage. 137:318-
326.
16. Yu, P.S., T.C. Yang, and C.K. Wu. 2002.
Impact of climate change on water
resources in southern Taiwan. J. Hydrol.
260:161-175.
17. Zhange, J.Y., G.Q. Wang, R.M. He and
C.S. Liu. 2009. Variation trends of runoffs
in the Middle Yellow River basin and its
response to climate change. Adv. Water
Sci. 20: 153-158.