اثر تخصیص منطقهای منابع آب در شاخص یکپارچه آب – اقتصاد – محیطزیست بر رشد اقتصادی پایدار در استانهای ایران
محورهای موضوعی :
Business Administration and Entrepreneurship
محمد هادی اکبرزاده
1
,
مسعود خداپناه
2
*
,
منصور زراءنژاد
3
1 - دانشجوی دکتری رشته اقتصاد، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران
2 - دانشیار رشته اقتصاد، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران
3 - استاد تمام رشته اقتصاد، گروه اقتصاد، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران
تاریخ دریافت : 1400/06/26
تاریخ پذیرش : 1402/11/10
تاریخ انتشار : 1402/11/01
کلید واژه:
رشد اقتصادی,
استان های ایران,
شاخص یک پارچه,
آنتروپی فازی,
روش گشتاورهای تعمیم یافته (GMM),
چکیده مقاله :
چکیده
مقدمه: هر چند همه صاحبنظران اجماع کامل دارند که ورشکستگی آبی تبدیل به اساسیترین چالش پیش روی توسعه در ایران طی دهههای آینده خواهد شد؛ هنوز یک سیستم یکپارچه آب – اقتصاد – محیطزیست برای تخصیص پایدار منابع آب و سیاستگذاری منطقهای برای حل مشکلات آبی در کشور وجود ندارد. هدف این پژوهش بررسی اثر تخصیص منطقهای منابع آب در شاخص یکپارچه آب – اقتصاد – محیطزیست بر رشد اقتصادی منطقهای در استانهای ایران بوده است.
روش: پس از تعیین شاخص یکپارچه آب مجازی بر اساس آخرین ادبیات نظری و تجربی، شاخص یکپارچه آب– اقتصاد–محیطزیست برای سیاستگذاری منطقهای آب در 31 استان کشور با استفاده از روش ارزیابی جامع فازی و رویکرد آنتروپی برآورد شده است. در حدود 55 عنوان داده برای برآورد شاخص یکپارچه آب منطقهای استفاده شده است که این دادهها از سالنامههای آماری ملی و استانی، مرکز آمار ایران، وزارت صنعت، معدن و تجارت، آمارنامه بخش کشاورزی و موسسه تحقیقات فنی کشاورزی جمعآوری شده و مورد تجزیه و تحلیل قرار گرفته است. در نهایت، اثر تخصیص منطقهای منابع آب در شاخص یکپارچه آب- اقتصاد- محیطزیست بر رشد اقتصادی استانهای کشور با استفاده از روش گشتاورهای تعمیمیافته (GMM) طی دوره زمانی 1397-1391 برآورد شده است.
یافته ها: در هر یک از استانهای کشور بسته به وضعیت قوت و ضعف آن استان در هر یک از ابعاد منابع آب، تکنولوژی و حمل و نقل، اقتصادی، اجتماعی و زیستمحیطی در شاخص آب- اقتصاد- محیط زیست، نیازمند اتخاذ رویکرد و سیاستگذاری متناسب با شرایط خاص آن استان وجود دارد. افزون بر این، در نظر گرفتن سیستمهای یکپارچه برای تخصیص منابع آب و بهکارگیری آن در قالب شاخص یکپارچه آب- اقتصاد- محیطزیست میتواند اثری مثبت و معنادار بر رشد اقتصادی استانهای کشور داشته باشد. همچنین اثر مثبت و معنادار سرمایه انسانی، تشکیل سرمایه و امید به زندگی در رشد اقتصادی استانهای کشور تایید شد.
نتیجه گیری: نتایج مطالعه نشان داد که سیاستگذاری در زمینه تخصیص منابع آب در ایران با هدف دستیابی به رشد اقتصادی باید بهصورت منطقهای و بر اساس یک شاخص یکپارچه آبی- اقتصادی- زیستمحیطی صورت گیرد تا بتوان بر اساس ظرفیتهایی آبی در هر استان سیاستگذاریهای آبی متناسب با وضعیت همان استان را انجام داد. افزون بر این، استانهای ضعیف در شاخص یکپارچه منطقهای باید طی دوره بلندمدت فعالیتهای تولیدی بخشهای کشاورزی و صنایع دسته اول و دسته دوم از نظر آببری را تا حد امکان کاهش داده و کالاهای تولیدی آببر را از استانهای با وضعیت قوی از نظر شاخص یکپارچه آبی- اقتصادی- زیستمحیطی منطقهای وارد کنند تا بتوانند فرآیند رشد اقتصادی خود را با وضعیت آبی- اقتصادی- اجتماعی و زیستمحیطی خود به شکلی پایدار سازگار کنند.
چکیده انگلیسی:
Abstract
Introduction: Despite the consensus among all experts that water bankruptcy will be the main development challenge in Iran for the coming decades which can threat Iran's regional development and food security; there is still no integrated water-economy-environment index system for allocation of water resources in Iranian provinces. Therefore, the purpose of this study was to investigate the effects of regional water resource allocation in integrated water-economy- environment index on the economic growth of Iranian provinces.
Methods: After determining the integrated regional water-economy-environment index based on the recent theoretical and empirical literature, the integrated regional index was estimated for water resource allocations in 31 Iranian provinces using fuzzy comprehensive evaluation method and improved entropy approach. About 55 data titles were collected from various databases including Provincial and National Statistical Yearbooks, Statistical Centre of Iran, Ministry of Industry, Mine and Trade, Agricultural Statistical Yearbook, Agricultural Technical Research Institute. Finally, the effect of regional water resource allocations in water-economy-environment index on economic growth of Iranian provinces was estimated during the period from 2012 to 2018 using Generalized Method of Moments (GMM) approach.
Findings: Estimation of the total index with 5 main components revealed that Gilan, Mazandaran, Chaharmahaal & Bakhtiari and Khuzestan provinces can be suggested as the most suitable provinces to implement domestic virtual water strategy. The final results proved that policy making for implementation of virtual water strategy should be conducted regionally and individually based on the status of each province in water-economy-environment components of regional integrated index. Finally, the results of the study indicated that integrated regional water-economy-environment index had a positive and significant effect on economic growth of Iranian provinces.
منابع و مأخذ:
1. Garrick DE, Hanemann M, Hepburn C. Rethinking the economics of water: An assessment. Oxford Review of Economic Policy. 2020 Jan 6;36(1):1-23. DOI: https://doi.org/10.1093/oxrep/grz035
Madani K, AghaKouchak A, Mirchi A. Iran’s socio-economic drought: challenges of a water-bankrupt nation. Iranian studies. 2016 Nov 1;49(6):997-1016. DOI:https://doi.org/10.1080/00210862.2016.1259286
Hoekstra AY, Mekonnen MM. The water footprint of humanity. Proceedings of the national academy of sciences. 2012 Feb 28;109(9):3232-7. https://doi.org/10.1073/pnas.1109936109
Mueller JT, Gasteyer S. The widespread and unjust drinking water and clean water crisis in the United States. Nature Communications. 2021 Jun 22;12(1):1-8. https://doi.org/10.1038/s41467-021-23898-z
Saatsaz M. A historical investigation on water resources management in Iran. Environment, Development and Sustainability. 2020Mar; 22(3):1749-85. https://doi.org/10.1007/s10668-018-00307-y
Dormido H. These Countries Are the Most at Risk From a Water Crisis, Bloomberg, August 2019, 8: 30. https://www.bloomberg.com/graphics/2019-countries-facing-water-crisis/
Joodaki, G., Wahr, J., & Swenson, S. Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679-2692. https://doi.org/10.1002/2013WR014633
Caldera U, Bogdanov D, Fasihi M, Aghahosseini A, Breyer C. Securing future water supply for Iran through 100% renewable energy powered desalination. IJSEPM [Internet]. 2019Sep.20 [cited 2021Sep.16]; 23. https://doi.org/10.5278/ijsepm.3305
Shalamzari, M., & Zhang, W. Assessing Water Scarcity Using the Water Poverty Index (WPI) in Golestan Province of Iran. Water, 2018Aug, 10(8), 1079. https://doi.org/10.3390/w10081079
Madani K. Water management in Iran: what is causing the looming crisis?. Journal of environmental studies and sciences. 2014 Dec; 4(4):315-28. https://doi.org/10.1007/s13412-014-0182-z
Merrett, S., Virtual Water and the Kyoto Consensus: A Water Forum Contribution. Water International, 2009Jan, 28(4), 540-542. https://doi.org/10.1080/02508060308691732
Ansink, E, Refuting Two Claims about Virtual Water Trade. Ecological Economics, 2010Aug, 69(10), 2027-2032. https://doi.org/10.1016/j.ecolecon.2010.06.001
13. Jia S, Long Q, Liu W. The fallacious strategy of virtual water trade. International Journal of Water Resources Development. 2017 Mar 4; 33(2):340-7. https://doi.org/10.1080/07900627.2016.1180591
Cui X, Wu X, He X, Li Z, Shi C, Wu F. Regional suitability of virtual water strategy: Evaluating with an integrated water-ecosystem-economy index. Journal of Cleaner Production. 2018 Oct 20;199:659-67. https://doi.org/10.1016/j.jclepro.2018.07.192
J. Reimer. J, On the Economics of Virtual Water Trade. Ecological Economics, 2012Mar 75:135-139. https://doi.org/10.1016/j.ecolecon.2012.01.011
Gawel, E, & Bernsen, K. What is wrong with Virtual Water Trading? On the Limitations of the Virtual Water Concept. Environment and Planning C: Government and Policy, 2013 Jan 1: 31(1), 168-181. https://doi.org/10.1068/c11168
Qudusi, H. & Davari H. Critical analysis of virtual water from a policy perspective. Water and Sustainable Development, 2016 Jan 1; 3 (1), 47-58. (In Persian). 10.22067/JWSD.V3I1.59520
Karandish F, Hogeboom RJ, Hoekstra AY. Physical versus virtual water transfers to overcome local water shortages: A comparative analysis of impacts. Advances in Water Resources. 2021 Jan 1;147:103811. https://doi.org/10.1016/j.advwatres.2020.103811
Kalantari K, Maknoon, R, Karimi, D. Establishment of legal framework for integrated water resources management in Iranian watersheds, Quarterly Journal of Leadership and Public Policy Studies. 2018 winter; 7(25), (In Persian). http://sspp.iranjournals.ir/article_29725.html
Allan, J.A, “Virtual Water”: A Long Term Solution for Water Short Middle Eastern Economies. British Association Festival of Science, Water and Development Session, University of Leeds, London, 1997, https://www.semanticscholar.org/paper/'Virtual-water'%3A-a-long-term-solution-for-waterAllan/60329839f14f2bd2c2cdc6e00a3c1cf279703f99?sort=relevance
Allan J.A, Virtual Water - the Water, Food, and Trade Nexus. Useful Concept or Misleading Metaphor?, Water International, 2003Jan, 28:1, 106-113, https://doi.org/10.1080/02508060.2003.9724812
Katyaini S, Barua A, Duarte R. Science-policy interface on water scarcity in India: Giving ‘visibility’to unsustainable virtual water flows (1996–2014). Journal of Cleaner Production. 2020 Dec 1;275:124059. https://doi.org/10.1016/j.jclepro.2020.124059
Yang, H, Zehnder, A.J. Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Development, 2002 Aug 3, 30, 1413-1430. https://doi.org/10.1016/S0305750X(02)00047-5
Wichelns D. Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity. Ecological Indicators. 2015 May 1; 52:277-83. https://doi.org/10.1016/j.ecolind.2014.12.013
El-Sadek, A. Virtual Water: An Effective Mechanism for Integrated Water Resources Management. Agricultural Sciences. 2012 Jun; 2(03), 248. doi:10.4236/as.2011.23033
Gong, L, & Jin, C. Fuzzy comprehensive evaluation for carrying capacity of regional water resources. Water resources management. 2016 Sep 8; 23(12), 2505-2513. https://doi.org/10.1007/s11269-008-9393-y
Qasemipour, E, & Abbasi, A. Virtual water flow and water footprint assessment of an arid region: A case study of South Khorasan province, Iran. Water, 2019 Aug; 11(9), 1755. https://doi.org/10.3390/w11091755
Nasrollahi M, Khosravi H, Moghaddamnia A, Malekian A, Shahid S. Assessment of drought risk index using drought hazard and vulnerability indices. Arabian Journal of Geosciences. 2018 Oct;11(20):1-2. https://doi.org/10.1007/s12517-018-3971-y
Darbandsari P, Kerachian R, Malakpour-Estalaki S. An Agent-based behavioral simulation model for residential water demand management: The case-study of Tehran, Iran. Simulation Modelling Practice and Theory. 2017 Nov 1; 78:51-72. https://doi.org/10.1016/j.simpat.2017.08.006
Pouran, R, Raghfar H, Ghasemi, A, & Bazazan, F. Calculating the economic value of virtual water using maximizing irrigation water efficiency approach", Iranian Journal of Water Economics, 2018 Spring; 6(21), pp. 189-212. (In Persian). doi: 10.22084/aes.2017.1803
Mousavi, S. N., Akbari, S. M. R., Soltani, Gh,. & M. Zarei. Virtual water, a new strategy to deal with water crisis, The First National Conference on Water Crisis Management, March 2010. (In Persian). https://www.sid.ir/fa/seminar/ViewPaper.aspx?ID=5009
Manshadi HD, Niksokhan MH, Ardestani M. A quantity-quality model for inter-basin water transfer system using game theoretic and virtual water approaches. Water Resources Management. 2015 Oct;29(13):4573-88. https://doi.org/10.1007/s11269-015-1076-x
Karamouz, M, Yazdi, M. S, Ahmadi, B, & Zahraie, B. A system dynamics approach to economic assessment of water supply and demand strategies. In World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, pp. 1194-1203). https://doi.org/10.1061/41173(414)123
Hull V, Liu J. Telecoupling: A new frontier for global sustainability. Ecology and Society. 2018 Dec 12;23(4). http://dx.doi.org/10.5751/ ES-05873-180226
Shannon, C. E. (2001). A Mathematical Theory of Communication. SIGMOBILE Mob Comput Commun Review. 2001 Jan; 5 (1): 3–55. https://doi.org/10.1145/584091.584093
Arya V, Kumar S. Multi-criteria decision making problem for evaluating ERP system using entropy weighting approach and q-rung orthopair fuzzy TODIM. Granular Computing. 2020 Nov 2:1-3. https://doi.org/10.1007/s41066-020-00242-2
Wu, D. S, Feng, X, & Wen, Q. Q. The Research of Evaluation for Growth Suitability of Carya Cathayensis Sarg. Based on PCA and AHP. Procedia Engineering, 2011; 15, 1879-1883. https://doi.org/10.1016/j.proeng.2011.08.350
Van der Voort N, Vanclay F. Social impacts of earthquakes caused by gas extraction in the Province of Groningen, The Netherlands. Environmental Impact Assessment Review. 2015 Jan 1; 50:1-5. https://doi.org/10.1016/j.eiar.2014.08.008
Delgado A, Romero I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environmental Modelling & Software. 2016 Mar 1; 77:108-21. https://doi.org/10.1016/j.envsoft.2015.12.011
Talon A, Curt C. Selection of appropriate defuzzification methods: Application to the assessment of dam performance. Expert Systems with Applications. 2017 Mar 15; 70:160-74. https://doi.org/10.1016/j.eswa.2016.09.004
Azadinejad, A., Amadeh, H., Emami Maibodi, A. Studying Factors Influencing Technical Efficiency of Industrial Sector Among Different Regions (With Data Envelopement Analysis). Journal of Economic Research (Tahghighat- E- Eghtesadi), 2009; 49(1): 173-188. doi: 10.22059/jte.2014.50546
Majerník V. Entropy—A universal concept in sciences. Natural Science. 2014 Apr 25;2014. DOI:10.4236/ns.2014.67055
Zadeh LA. Fuzzy logic—a personal perspective. Fuzzy sets and systems. 2015 Dec 15; 281:4-20. https://doi.org/10.1016/j.fss.2015.05.009
Hertel T, Liu J. Implications of water scarcity for economic growth. InEconomy-wide modeling of water at regional and global scales 2019 (pp. 11-35). Springer, Singapore.
Sarvin, Gh. , Sobhani R, Etaei S, Hosseini Z, Montaseri M. Development of hydro-social-economic-environmental sustainability index (HSEESI) in integrated water resources management. Environmental Monitoring and Assessment. 2021 Aug;193(8):1-29.
Qiao N, Fang L, Mu L. Evaluating the impacts of water resources technology progress on development and economic growth over the Northwest, China. PloS one. 2020 Mar 12; 15(3):e0229571.
Blundell R, Bond S. Initial conditions and moment restrictions in dynamic panel data models. Journal of econometrics. 1998 Nov 1; 87(1):115-43.
Arellano M, Bond S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The review of economic studies. 1991 Apr 1; 58(2):277-97.
Arellano M, Bover O. Another look at the instrumental variable estimation of error-components models. Journal of econometrics. 1995 Jul 1; 68(1):29-51.
Ye W, Xu X, Wang H, Wang H, Yang H, Yang Z. Quantitative assessment of resources and environmental carrying capacity in the northwest temperate continental climate ecotope of China. Environmental Earth Sciences. 2016 May 1; 75(10):868.
51. Shadman Roodposhti M, Aryal J, Shahabi H, Safarrad T. Fuzzy shannon entropy: A hybrid gis-based landslide susceptibility mapping method. Entropy. 2016 Oct; 18(10):343.
_||_