پیش بینی جریان ورودی به مخزن سد با استفاده مدل شبکه عصبی مصنوعی بر مبنای دادههای ماهوارهمحورPERSIANN-CDR و CMC(مطالعه موردی: سد زاینده رود)
محورهای موضوعی : برگرفته از پایان نامهرامتین معینی 1 * , محمدعلی علیجانیان 2 , مینا مرادی زاده 3
1 - گروه عمران، دانشکده عمران حمل و نقل، دانشگاه اصفهان، اصفهان، ایران
2 - گروه عمران، دانشکده عمران حمل و نقل، دانشگاه اصفهان
3 - گروه نقشه برداری، دانشکده عمران حمل و نقل، دانشگاه اصفهان
کلید واژه: شبکه عصبی مصنوعی, بارندگی, آب معادل برف, داده های ماهواره محور, سد زاینده رود,
چکیده مقاله :
در این تحقیق، عملکرد دادههای ماهواره محور PERSIANN- CDR و CMC در تخمین بارش و تعیین جریان ورودی به مخزن سد بررسی شده است. لذا، با ترکیب مختلف دادههای ورودی، مدلی هایی معرفی و با استفاده از مدل شبکه عصبی مصنوعی جریان ورودی به مخزن سد پیش بینی شده و با نتایج دادههای زمینی مقایسه شده است. در این تحقیق، مخزن سد زاینده رود از حوضه آبریز گاوخونی به عنوان مطالعه موردی انتخاب شده است. بررسی نتایج نشان دهنده آنست که بهترین نتایج شاخص R2 و RMSE برای دادههای تخمین بارندگی (برف) ماهوارهمحور PERSIANN-CDR (CMC) 49/0 (34/0) و 90/60 (56/41) میلیمتر می باشد. به عبارت دیگر، نتایج نشان دهنده عملکرد مناسب داده های ماهواره محور در تخمین بارنگی و برف می باشد. بنابراین از این داده ها در ساخت شبکه عصبی مصنوعی به منظور تعیین جریان ورودی به مخزن سد زاینده رود استفاده شده است. بررسی نتایج مدل شبکه عصبی مصنوعی نشان داد که مقادیر شاخص R2 ، RMSE و NSE برای داده های آموزش (صحت سنجی و آزمایش) به ترتیب برابر با 72/0 (74/0)، 08/56 (178/75) میلیون متر مکعب (MCM) و 85/0 (86/0) می باشد که نشان دهنده عملکرد مناسب این مدل در تعیین و پیش بینی جریان ووردی به مخزن سد زاینده رود می باشد.
However, the scale of satellite-based data and the need for their exponential scaling are the uncertainties of these data. In this research, the performance of PERSIANN-CDR and CMC satellite data for rainfall and snow estimation and determining the inflow values into the dam reservoir is investigated. Therefore, by considering different combinations of input data, different models are proposed and the input flow to the dam reservoir is predicted using the artificial neural network (ANN) model. Here, the the ZayandehRoud dam reservoir of the Gavkhoni drainage basin is selected as a case study. The results shows that the best R2 and RMSE values for rainfall (snow) estimation data based on the PERSIANN-CDR satellite (CMC) are 0.49 (0.34) and 60.90 (41.56) mm. In other words, the results show the proper performance of satellite-based data for rainfall and snow estimation. Therefore, these data are used for creating the ANN model to determine the inflow values into the reservoir of ZayandehRoud dam reservoir. The results show that the values of R2, RMSE and NES for training data (validation and testing) of ANN model are equal to 0.72 (0.74), 56.08 (75.178) MCM, and 0.85 (0.86) respectively. In other words, the results show the proper performance of satellite-based data for estimating and determining the inflow into the ZayandehRoud dam reservoir using ANN model.
- Adamowski J. & Sun, K. (2010). Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, Journal of Hydrology, 390(1): 85-91. https://doi.org/10.1016/j.jhydrol.2010.06.033
- Alijanian, M.A., Moradizadeh, M., Moeini, R. (2022). Estimation of precipitation using PERSIANN-CDR and CMC-based satellite productions (Case study: upstream of the Zayandehroud dam), EcoHydrology, 9(1): 157-172 [ in Persian]
- Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2017). Evaluation of Satellite Rainfall Climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. International Journal of Climatology. 37: 4896-4914. https://doi.org/10.1002/joc.5131
- Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., & Dehghani, M. (2019). Evaluation of remotely sensed precipitation estimates using PERSIANN-CDRand MSWEP for spatio-temporal drought assessment over Iran. Journal of Hydrology. 579: 124189. https://doi.org/10.1016/j.jhydrol.2019.124189
- Anctil, F. Michel, C. Perrin, C. &Andréassian, V. (2004). A soil moisture index as an auxiliary ANN input for stream flow forecasting," Journal of Hydrology, 286(1): 155-167. https://doi.org/10.1016/j.jhydrol.2003.09.006
- Apaydin, H. Feizi, H. Sattari, M. T. Colak, M. S. Shamshirband, S. & Chau, K.-W. (2020). Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting, Water, 12, (5): 1500 ..https://doi.org/10.3390/w12051500
- Ashouri H., Hsu K. L., Sorooshian S., Braithwaite D.K., Knapp K.R., Cecil L.D., Nelson B. R., & Prat O. P. (2014). PERSIANN-CDR: daily precipitation climate data record from multi-satellite observations for hydrological and climate studies. Bulletin of the. American Meteorological Society. 96(1): 69–84. https://doi.org/10.1175/BAMS-D-13-00068.1
- Babaei, M. Moeini, R. &Ehsanzadeh, E. (2019). Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir), Water Resources Management, 33(6): 2203-2218. https://doi.org/10.1007/s11269-019-02252-5
- Budu, K. (2014). Comparison of Wavelet-Based ANN and Regression Models for Reservoir Inflow Forecasting, Journal of Hydrologic Engineering, 19(7): 1385-1400. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000892
- Dinku, T., Ceccato, P., Grover, K. E., Lemma, M., Connor, S. J., & Ropelewski, C. F. (2007). Validation of satellite rainfall products over East Africa's complex topography. International Journal of Remote Sensing, 28(7):1503-1526. https://doi.org/10.1080/01431160600954688
- Gurney, K. (2000). Kevin Gurney, An Introduction to Neural Networks, University College London (UCL) Press, 1997. ISBN 1-85728-673-1 HB.£ 14.95. xi+ 234 pages, Natural Language Engineering, 6(2) : 203-204. https://doi.org/10.1017/S1351324900002540
- Guo W.D., Chen W.B., Chang, C.H. (2023). Prediction of hourly inflow for reservoirs at mountain catchments using residual error data and multiple-ahead correction technique, Hydrology Research 54 (9): 1072–1093. https://doi.org/10.2166/nh.2023.072
- Gupta, A. and Kumar A. (2022). Two-step daily reservoir inflow prediction using ARIMA-machine learning and ensemble models, Journal of Hydro-environment Research, 45: 39-52. https://doi.org/10.1016/j.jher.2022.10.002
- Javanmard, S. Yatagai, A. Nodzu, M. I. BodaghJamali, J. & Kawamoto, H. (2010). Comparing high-resolutiongridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences. 25: 119- 125. https://doi.org/10.5194/adgeo-25-119-2010
- Kalteh, A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform, Computers & Geosciences, 54: 1-8. https://doi.org/10.1016/j.cageo.2012.11.015
- Kalteh, A.M. (2015). Wavelet Genetic Algorithm-Support Vector Regression (Wavelet GA-SVR) for Monthly Flow Forecasting, Water Resources Management, 29 (4): 1283-1293. https://doi.org/10.1007/s11269-014-0873-y
- Katiraie-Boroujerdy, P. S., Nasrollahi, N., Hsu, K. L., &Sorooshian, S. (2013). Evaluation of satellite-based precipitation estimation over Iran. Journal of Arid Environments, 97: 205-219. https://doi.org/10.1016/j.jaridenv.2013.05.013
- Khazaee Poul, A. Shourian, M. & Ebrahimi, H. (2019), A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction, Water Resources Management, 33(8): 2907-2923. https://doi.org/10.1007/s11269-019-02273-0
- Kisi O. &Partal, T. (2011). Wavelet and neuro-fuzzy conjunction model for streamflow forecasting, Hydrology Research, 42, (6): 447-456. https://doi.org/10.2166/nh.2011.048
- Latif, S. D. Ahmed, A. N.Sathiamurthy, E. Huang, Y. F. & El-Shafie, A. (2021). Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia, Natural Hazards, 109(1): 351-369. https://doi.org/10.1007/s11069-021-04839-x
- Menhaj, M.B. (2021). Computational Intelligence (vol. 1), fundamental of neural networks, Amirkabir University of Technology (Tehran Polytechnic), Tehran [in Persian]
- Moradizadeh, M., Alijanian M.A., Moeini, M. (2023). Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods Over the Zayandehroud River Basin, Iran, PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (In press). https://doi.org/10.1007/s41064-023-00249-9
- Noorbeh, P. Roozbahani, A. & Kardan Moghaddam, H. (2020), Annual and Monthly Dam Inflow Prediction Using Bayesian Networks, Water Resources Management, 34(9): 2933-2951. https://doi.org/10.1007/s11269-020-02591-8
- Partal T. and Kişi, Ö. (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting, Journal of Hydrology, 342(1): 199-212.
- Pramanik N. & Panda, R. K. (2009). Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction, Hydrological Sciences Journal, 54(2): 247-260. https://doi.org/10.1623/hysj.54.2.247
- Ravansalar, M. Rajaee, T. & Kisi, O. (2017). Wavelet-linear genetic programming: A new approach for modeling monthly streamflow, Journal of Hydrology, 549: 461-549. https://doi.org/10.1016/j.jhydrol.2017.04.018
- Pishgah Hadiyan, P., Moeini, R., Ehsanzadeh, E., & Karvanpour, M. (2022) Trend Analysis of Water Inflow Into the Dam Reservoirs under future Conditions Predicted By Dynamic NAR and NARX Models, Water Resources Management, 36(8), pp. 2703–2723. https://doi.org/10.1007/s11269-022-03170-9
- Safavi, H. R., Darzi, F., and Mariño, M. A. (2010). Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resource Management, 24(10), 1965–1988. https://doi.org/10.1007/s11269-009-9533-z
- Smith T, Arkin P, Bates J, & Huffman J. (2006). Estimating Bias of Satellite-Based Precipitation Estimates. Journal of Hydrometeorology, 7 (5): 841-856.
- Suriya, S. Saran, K. Anto, L. C. Anbalagan, C. & Vinodh, K. (2021). Inflow Forecasting of Bhavanisagar Reservoir Using Artificial Neural Network (ANN): A Case Study, In: Ramanagopal, S., Gali, M., Venkataraman, K. (eds) Sustainable Practices and Innovations in Civil Engineering. Lecture Notes in Civil Engineering,79: 119-131. https://doi.org/10.1007/978-981-15-5101-7_12
- Tan, M. L., Ibrahim, A. L., Duan, Z., Cracknell, A. P., &Chaplot, V. (2015). Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sensing. 7: 1504-152. https://doi.org/10.3390/rs70201504