پیش بینی نرخ شکست لوله ها در شبکه های توزیع آب با استفاده از روش های RCNN-SVR و FCMR
محورهای موضوعی : برگرفته از پایان نامهمهدی مومنی رق آبادی 1 , احمد روانبخش 2 , امیر رباطی 3
1 - گروه مهندسی عمران، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران
2 - گروه مهندسی عمران، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران
3 - گروه مهندسی عمران، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران
کلید واژه: هوش مصنوعی, فازی, شبکه توزیع آب, شکست لوله, نرخ شکست,
چکیده مقاله :
چکیده
مقدمه: بهینه سازی برنامه های اصلاح، بازسازی و نوسازی شبکه های آب شهری به منظور استفاده صحیح از منابع محدود آب امری ضروری است. هدف از تحقیق حاضر پیاده سازی و مقایسه دو روش هوش مصنوعی به منظور پیش بینی نرخ شکست لوله های آب می باشد.
روش: در این مقاله، اطلاعات اتفاقات شبکه آب شهر جوپار از سال 1391 تا 1398 جمع آوری شده است. پارامترهای بررسی شده در شکست لوله ها شامل جنس، سن، قطر، فشار آب و عمق نصب بوده که ضریب همبستگی این پارامترها با نرخ شکست بررسی گردیده است. به منظور پیش بینی نرخ شکست، از روش های شبکه عصبی کانولوشن با ماشین بردار پشتیبان(RCNN-SVR) و رگرسیون فازی براساس خوشه بندی میانگین c (FCMR) استفاده شده است. جهت مقایسه عملکرد دو روش نیز از معیارهای میانگین مربعات خطا، درصد خطای میانگین مطلق، شاخص تطابق و ضریب تعیین بهره گرفته شده است.
یافته ها: با توجه به ارزیابی صورت گرفته، روش RCNN-SVR نسبت به روش FCMR نتایج بسیار مناسبی را نشان می دهد. همچنین همبستگی بین سن و نرخ شکست در لوله های آزبست بالا بوده و در لوله های پلی اتیلن این مقدار مثبت ولی کم می باشد. ضریب همبستگی بین فشار و نرخ شکست نیز برای هر دو جنس لوله مثبت است.
نتیجه گیری: RCNN-SVR مدل پیش بینی دقیق تری را نسبت به FCMR ارائه داده و خطای کمتری دارد. لذا این روش می تواند به طور موثر نرخ شکست لوله ها را پیش بینی نماید.
Abstract
Introduction: It is essential to optimize repair, reconstruction and rehabilitation programs of urban water distribution networks for the correct use of limited water resources. The aim of the present study is to implement and compare two artificial intelligence methods to predict the burst rate of water pipes.
Methods: In this article, dataset of the pipe bursts in Joopar water network from 2012 to 2017 has been collected. The parameters for predicting of pipe failure includes: material, age, diameter, water pressure and installation depth, and the correlation coefficient of these parameters with the failure rate has been investigated. In order to predict the failure rate, convolution neural network with support vector machine (RCNN-SVR) and fuzzy regression based on c mean clustering (FCMR) have been used. To compare the performance of these two methods, the criteria such as Root-Mean Squared Error (RMSE), Index Of Agreement (IOA), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2) have been used.
Findings: According to the evaluations, RCNN-SVR method compared to FCMR method shows excellent results. Also, the correlation between age and failure rate in asbestos pipes is high and in polyethylene pipes this value is positive but low. The correlation coefficient between pressure and failure rate is also positive for both pipe types.