آشکار سازی تجربی آب های کدر و شفاف با استفاده از تصاویر ماهواره سنتینل-2 (مطالعه نمونه ای آبگیر سد سفید رود)
محورهای موضوعی : برگرفته از پایان نامهمعصومه رسولیان 1 , طاهر صفرراد 2 * , محمد اکبری نسب 3 , نادیا طالب پور 4
1 - دانشجوی کارشناسی ارشد فیزیک دریا، دانشکده علوم دریایی، دانشگاه مازندران، بابلسر
2 - استادیار اقلیم شناسی، دانشکدة علوم انسانی و اجتماعی، دانشگاه مازندران، بابلسر
3 - استادیار گروه فیزیک دریا، دانشکده علوم دریایی، دانشگاه مازندران، بابلسر
4 - دانشجوی کارشناسی ارشد فیزیک دریا، دانشکده علوم دریایی، دانشگاه مازندران، بابلسر
کلید واژه: آب کدر و شفاف, شاخص فاکتور بهینه, شاخص NDVI, سنجنده سنتینل-2, سد سفید رود,
چکیده مقاله :
افزایش حجم ورودی آب رودخانه به سد در فصول پرآبی سبب گلآلودگی در قسمتهای ورودی آب به سد میگردد. تأثیر آب شفاف و کدر روی سهم پریفیتون ها که در تغذیه آبزیان و همچنین در تصفیه آبهای آلوده نقش مهمی دارند، از اهمیت ویژهای برخوردار است به گونهای که در آبهای شفاف فراوانی بیشتری نسبت به آبهای کدر دارند. در این مقاله با استفاده از تصاویر سنجنده سنتینل-2 و بهرهگیری از ویژگیهای رفتار طیفی آب کدر و شفاف و تاکید بر کمیتهای آماری به آشکارسازی آنها در سد سفیدرود طی دو فصل بهار (17 فروردین 1396) و تابستان (22 شهریور 1396) پرداخته میشود. در این راستا، پس از اعمال پیشپردازشهای مورد نیاز (تصحیح هندسی و رادیومتریکی)، با بررسی منحنی رفتار طیفی این دو پدیده و همچنین شاخصOIF ، ترکیبهای رنگی بهینه تشخیص داده شدند. براین اساس، مناسبترین ترکیب رنگی حاوی بیشترین حجم اطلاعات برای فصل بهار، ترکیب رنگی (a4،8،8) و برای فصل تابستان، ترکیب رنگی (8،1،a8) مشخص گردید. از طرف دیگر، با استفاده از مطالعه رفتار طیفی آب کدر و شفاف، در محدوده طولموجهای 4/0 تا 87/0 میکرومتر (باندهای 1 تا a8)، این دو پدیده به خوبی قابل تفکیک از هم و سایر پدیدها هستند بنابراین، شاخص NDVI که تفاضل استاندارد شده محدوده طیفی مادون قرمز نزدیک(باند 8) و قرمز مرئی(باند 4) را بررسی می کند جهت آشکارسازی آب کدر و شفاف مورد توجه قرار گرفت و درنهایت از طریق اعمال آستانه هایی روی آن، آب کدر و شفاف از هم متمایز شدند.
The effects of clear and turbid water on the contribution of prefitons, which play an important role in aquatic nutrition and in the treatment of contaminated waters, are very important in a way that is more abundant in clear waters than opaque waters. In this paper, using Sentinel-2 measuring images and using spectral properties of opaque and clear water, and emphasizing statistical quantities, they are to be detected in the Sefidrud Dam during two seasons (March 27 , 2017) and summer (September 13, 2017). In this regard, after applying the required preprocesses (geometric and radiometer correction), by examining the spectral behavior curve of these two phenomena as well as the OIF index, optimal color combinations were detected by the test and error method. Accordingly, the most suitable color combination contains the largest amount of information for the spring, the color combination (a4,8,8) and for the summer, the color combination (8.1, a8) was determined. On the other hand, using the spectral-velocity study of opaque and clear water, within the range of 4/0 – 87/0 μm (bands 1 through a8), these two phenomena are well-differentiated from each other and other phenomena. Therefore, the NDVI index, which examines the standardized difference of the near-infrared spectral range (band 8) and visible red (band 4), was considered for revealing cloudy and transparent water, and eventually, by applying thresholds on it, Cloudy and clear water was distinguished from each other.
1) Ba aghideh , M. and Ziaian, p. 2011. Investigation of the Use of NDVI Vegetation Index in Isfahan Province Drought Analysis. J. Geographical studies of dry area. 4: 1- 16. (In Persian).
2) Cengiz, O., Sener, E. and Yagmurlu, F. 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Sciences. 27: 155-163.
3) Chamoun, S., De Cesare, G. and Schleiss, A. J. 2016. Managing reservoir sedimentation by venting turbidity currents: A review. International Journal of Sediment Research. 31:195-204.
4) de Souza, J. S., Kizys, M. M. L., da Conceição, R. R., Glebocki, G., Romano, R. M., Ortiga-Carvalho, T. M. and Chiamolera, M. I. 2017. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology. 377: 25-37.
5) Ezatabadi Pour, H. 2017. Introducing Sentinel Satellite Images 2. Third National Conference on Recent Innovations in Civil Engineering, Architecture and Urban Development. 1-8. (In Persian).
6) Fan, J. and Morris, G. L. 1992. Reservoir sedimentation. II: Reservoir desiltation and long-term storage capacity. Journal of Hydraulic Engineering. 118: 370-384.
7) Fatemi, B. and Rezaei, Y. 2014. Basics of Remote Sensing. Azadeh Publisher. 1-296. (In Persian).
8) Fazel Dehkord, L., Azarnivand, H., Zare Chahouki, M.A. and Mahmoudi Kohan, F. 2016. Drought Monitoring Using Vegetation Index (NDVI) (Case study: Rangelands of Ilam Province). JOURNAL OF RANGE AND WATERSHED MANAGEMENT. 69: 141-154. (In Persian).
9) Garcia, M. and Parker, G. 1993. Experiments on the entrainment of sediment into suspension by a dense bottom current. Journal of Geophysical Research: Oceans. 98: 4793-4807.
10) Ha, N. T. T., Thao, N. T. P. Koike, K. and Nhuan, M. T., 2017. Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2a images from a case study of lake ba be (northern vietnam). ISPRS International Journal of Geo-Information. 6:290.
11) Hosseini Hamid, M., Akbari Nasab, M. and Safarrad, T. 2016. The Calculation of the Optimum Index Factor for Monitoring Water Resources pollution using Satellite Images: A Case Study of the Oman sea. Hydrophysics. 2: 35-45. (In Persian).
12) Khosronejad, A. 2008. Numerical Simulation of Sefid Rud Dam Reservoir Deposition Using Pressure Chassis Operation. J. Hydraulics. 3: 71-77. (In Persian).
13) Liu, H., Li, Q., Shi, T., Hu, S., Wu, G. and Zhou, Q. 2017. Application of sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sensing. 9: 761.
14) Maleki, M., Rahmati. M. and Javan, F. 2015. Assessing the Role of Dam Building in Agricultural Development Using Remote Sensing (Case Study of Gavshan and Suleiman Shah Dam). National Conference on the Application of Advanced Spatial Analysis Models (Remote Sensing and GIS) to Land Preparation. 1-10. (In Persian).
15) Meaden, G. J. 1991. Geographical information systems and remote sensing in inland fisheries and aquaculture. (No. F009. 048). Fao.
16) Melo Lins, R. P., Ovruski de Ceballos, B. S., Lopez, S., Carlos, L. and Gomes Barbosa, L. 2017. Phytoplankton functional groups in a tropical reservoir in the Brazilian semiarid region. Revista de Biología Tropical. 65: 1129-1141.
17) Mool, P. K., Wangda, D., Bajracharya, S. R., Kunzang, K. A. R. M. A., Gurung, D. R. and Joshi, S. P. 2001. Inventory of glaciers, glacial lakes and glacial lake outburst floods. Monitoring and early warning systems in the Hindu Kush-Himalayan Region: Bhutan. Inventory of glaciers, glacial lakes and glacial lake outburst floods. Monitoring and early warning systems in the Hindu Kush-Himalayan Region: Bhutan.
18) Pizarro, H., Vera, M. S., Vinocur, A., Pérez, G., Ferraro, M., Helman, R. M. and Dos Santos Afonso, M. 2016. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science and Pollution Research. 23: 5143-5153.
19) Pourafrasiabi, M. and Ramzanpour, Z. 2012. Investigation of phytoplankton as an indicator of pollution in aquatic ecosystems. The 5th Specialized Conference on Environmental Engineering. 1-9. (In Persian).
20) Rasti, M., Nabavi, M. Jafarzadeh, N. and Mobed, P. 2008. Study on Algal Flora of Periphyton Communities and in Relationship to Type of Substrate in Gargar River. Journal of Environmental studies. 46: 1-8. (In Persian).
21) SAMAEI, M., Afshar, A. and GHARAVI, M. 2005. SYSTEM DYNAMICS MODELING OF PHYTOPLANKTON AND ZOOPLANKTON IN RESERVOIRS. Water and Wastewater. 15: 47-55. (In Persian).
22) Sánchez, M. L., Rodríguez, P., Torremorell, A. M., Izaguirre, I., & Pizarro, H. 2017. Phytoplankton and periphyton primary production in clear and turbid shallow lakes: influence of the light environment on the interactions between these communities. Wetlands. 37: 67-77.
23) Shaloui, F. and Shahini Shamsabadi, Z. 2017. Population diversity and distribution of peritonitis in Beheshtabad River in spring. First National Conference on Natural Resources and Sustainable Development in Central Zagros. 1-9. (In Persian).
24) Sumantyo, S. and Tetuko, J. 2017. Assessment of Multi-Temporal Image Fusion for Remote Sensing Application. International Journal on Advanced Science, Engineering and Information Technology. 7: 778-784.
25) Sundin, J., Aronsen, T., Rosenqvist, G. and Berglund, A. 2017. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish. Behavioral ecology and sociobiology. 71: 78.
26) Torkmanzad, N., Mohammadnejad, B. and Bahmanesh, J. 2015. The Characteristics of the Paper The Impact of Lower Dam Discharge Valves Opening on Outflow of Mud Flows (Case Study: Sefidrood Dam). Journal of Tabriz University of Civil and Environmental Engineering. 74: 1-18. (In Persian).
27) Townsend, M., Peck, C., Meng, W., Heaton, M., Robison, R. and O'Neill, K. 2017. Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity. Regulatory Toxicology and Pharmacology. 85: 79-85.
28) Van Rompaey, A. J., Govers, G. and Puttemans, C. 2002. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth surface processes and landforms. 27: 481-494.
_||_