اثر شدت باران بر انتخابپذیری ذرات پاشمان یافته در خاکهای منطقه نیمهخشک
محورهای موضوعی : برگرفته از پایان نامهمجید فرومدی 1 * , علی رضا واعظی 2 , جعفر نیکبخت 3
1 - دانشجوی دکتری؛ گروه علوم خاک؛ دانشکده کشاورزی؛ دانشگاه زنجان؛ زنجان
2 - استاد؛ گروه علوم خاک؛ دانشکده کشاورزی؛ دانشگاه زنجان؛ زنجان
3 - دانشیار، گروه مهندسی آب؛ دانشکده کشاورزی؛ دانشگاه زنجان؛ زنجان
کلید واژه: تخریب خاکدانه, توزیع اندازه ذرات, شبیهساز باران, ضربه قطرات باران,
چکیده مقاله :
انتقال ذرات در اثر پاشمان قطرات به عوامل متعددی از جمله نوع خاک و شدت باران بستگی دارد. اگرچه اطلاعاتی در مورد نقش این دو عامل در فرسایش پاشمانی در دسترس است اما انتخابپذیری ذرات در فرسایش پاشمانی موضوعی ناشناخته میباشد. این پژوهش به منظور بررسی تغییرات فرسایش پاشمانی و انتخابپذیری ذرات در خاکهای مختلف تحت تأثیر شدت باران انجام گرفت. برای این منظور آزمایش در سه خاک با بافت مختلف (لوم، لومرسی و لومرسشنی) در سه شدت باران (10، 20 و 30 میلیمتر بر ساعت) تحت شیب ثابت 10 درصد در سه تکرار در مجموع با 27 واحد آزمایشی در قالب طرح کاملاً تصادفی انجام شد. بر اساس نتایج بیشترین مقدار فرسایش پاشمانی در خاک لومرسی (45/80 گرم بر متر مربع در دقیقه) و کمترین مقدار در خاک لومرسشنی (19/62 گرم بر متر مربع در دقیقه) بود. با افزایش شدت باران، شدت فرسایش پاشمانی افزایش یافت. به طور کلی انتخابپذیری ذرات در فرسایش پاشمانی تحت تأثیر بافت خاک، شدت باران و برهمکنش آن دو قرار گرفت. ذرات شن، سیلت و رس به ترتیب 23/3، 70/59 و 07/37 درصد از سهم ذرات پاشمان یافته را شامل شدند. در تمامی بافتها (به جز بافت لوم) انتخابپذیری ذرات سیلت در سطوح مختلف شدت باران بیشتر از سایر ذرات بود. در خاک لوم انتخابپذیری ذرات رس بیشتر از ذرات سیلت بود که علت این موضوع پایین بودن مقدار ذرات رس در نمونه اولیه خاک لوم بود.
Particles which transfer is effected by raindrop splash depends on several factors, including soil type and rainfall intensity. Although information on the role of these two factors in splash erosion is available, but the selectivity of particles in splash erosion is unknown. This study was conducted to investigate the effects of splash erosion and selectivity of particles in different soils under the influence of rainfall intensity. For this purpose, experiments were carried out in three different soils (Loam, Clay loam, Sandy clay loam) on tree rainfall intensities (10, 20 and 30 mm.h-1) under a constant slope of 10 % in three replications, with a total of 27 units in the form of a completely randomized design was done. According to the results, the highest and lowest amount of splash erosion in the soil were clay loam (80.45 g.m-2.min-1) and sandy clay loam (62.19 g.m-2.min-1), respectively. With increasing rainfall intensity, the intensity of splash erosion increased. In general, the selectivity of particles in the splash erosion is affected by the soil texture rainfall intensity and the interaction between of them. Sand, silt and clay particles were 3.23%, 59.70% and 37.07% of the share of splash particles. In all textures (except the loam texture), the selectivity of the silt particles at different levels of the gradient was greater than the rest. In the loam soil, clay particles were more selective than silt particles, due to the low clay particles in the initial soil sample.
1) بافکار، ع. و مجردی، ح. 1385. حفاظت آب و خاک. انتشارات دانشگاه رازی. صفحه 35-11.
2) بشارت، ف. و واعظی، ع.ر. 1394. تأثیر الگوی توزیع زمانی بارندگی طی رخداد بر رواناب و هدررفت خاک تحت بارانهای شبیهسازی شده. علوم و مهندسی آبخیزداری ایران. 9. 29: 18-9.
3) بلیانی، ع. و واعظی، ع.ر. 1396. حساسیت خاکها با بافت متفاوت به فرسایش پاشمانی تحت تأثیر شدت باران و محتوای رطوبتی پیشین. نشریه پژوهشهای حفاظت آب و خاک. 24(2): 84-67.
4) بلیانی، ع.، واعظی، ع.ر. و امامی، ه. 1397. تغییرپذیری فرسایش پاشمانی از تندی شیب و ویژگیهای خاک. علوم و مهندسی آبخیزداری ایران. 12.(41): 104-95.
5) حسنزاده، ح.، واعظی، ع.ر. و محمدی، م.ح. 1392. تغییرات رواناب در ابعاد کرت در نمونههای خاک با بافت مختلف تحت رخدادهای یکسان باران شبیهسازی شده. تحقیقات آب و خاک ایران. 44.(3): 254-245.
6) رفاهی، ح. 1385. فرسایش آبی و کنترل آن. چاپ پنجم. انتشارات دانشگاه تهران. صفحه 132-27.
7) عبدینژاد، پ.، فیضنیا، س. و پیروان، ح.ر. 1393. مقایسه فرسایشپذیری خاک اراضی مارنی استان زنجان با استفاده از دستگاه شبیهساز باران. نشریه پژوهشهای خاک. 25(2): 419-407.
8) غلامی، ل .و کریمی، ن. 1397. اثر مدت بارندگی و رطوبت خاک بر تغییرات پاشمان خاک. علوم و مهندسی آبخیزداری ایران. 12(42): 101-91.
9) فرومدی، م. و واعظی، ع.ر. 1396. تخریب فیزیکی و ظرفیت جدا شدن ذره از شیار تحت تأثیر شدت و ضربه قطرات باران در خاک مارنی. نشریه علوم آب و خاک. 21(2): 277-263.
10) قزل سفلو، ن.، بروغنی، م. و سلطانی گرد فرامرزی، س. 1396. اثر پلی اکریل آمید در کنترل فرسایش پاشمانی در زمانهای مختلف بارش. نشریه آبیاری و زهکشی ایران. 11(5): 771-763.
11) کیانیهرچگانی، م و. صادقی، س.ح.ر. 1396. اثر رگبارهای متوالی بر مؤلفههای فرسایش پاشمانی طی دو شدت مختلف بارندگی در شرایط آزمایشگاهی. اکوهیدرولوژی. 4(3): 846-837.
12) واعظی، ع.ر و. قرهداغلی، ح. 1392. کمیسازی گسترش فرسایش شیاری در خاکهای مارنی در حوزه آبخیز زنجانرود در شمال غرب زنجان. نشریه آب و خاک. 27(5): 881-872.
13) هنربخش، الف و حیاوی، ف. 1396. مطالعه آزمایشگاهی فرسایش پاشمانی در بافتهای مختلف خاک با استفاده از شبیهساز باران. پژوهشهای ژئومورفولوژی کمّی. 6. 3: 162-151.
14) Asadi, H., Moussavi, A., Ghadiri, H. and Rose, C.W. 2011. Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology. 406(1-2): 73-81.
15) Blake, G.R. and Hartge, K.H. 1986. Bulk Density 1. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. (methodsofsoilan1). 363-375.
16) Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal. 54(5): 464-465.
17) Carter, C.E., Greer, J.D., Braud, H.J. and Floyd, J.M. 1974. Raindrop characteristics in south central United States. Transactions of the ASAE. 17(6): 1033-1037.
18) Cheng, Q., Cai, Q. and Ma, W. 2008. Comparative study on rain splash erosion of representative soils in China. Chinese Geographical Science. 18(2): 155-161.
19) Duiker, S.W., Flanagan, D.C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena. 4(2): 103-121.
20) Erskine, W.D., Mahmoudzadeh, A.H.M.A.D. and Myers, C.. 2002. Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena. 49(4): 271-287.
21) Goh, T.B., Arnaud, R.S. and Mermut, A.R. 1993. Aggregate stability to water. Soil Sampling and Methods of Analysis. 177-180.
22) Kamalu, C. 1994. The effect of slope length and inclination on the separate and combined actions of rainsplash and runoff. In Conserving soil resources: European perspectives. Selected papers from the First International Congress of the European Society for Soil Conservation. CAB INTERNATIONAL. 143-149.
23) Kemper, W.D. and Rosenau, R.C. 1986. Aggregate stability and size distribution. 425-442.
24) Khalili Moghadam, B., Jabarifar, M., Bagheri, M. and Shahbazi, E., 2015. Effects of land use change on soil splash erosion in the semi-arid region of Iran. Geoderma. 241: 210-220.
25) Kinnell, P.I.A. 2005. Raindrop‐impact‐induced erosion processes and prediction: a review. Hydrological Processes: An International Journal. 19(14): 2815-2844.
26) Klute, A. and Dirksen, C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: part 1physical and mineralogical methods (methodsofsoilan1). 687-734.
27) Lal, R. 1990. Soil erosion in the tropics: principles and management. McGraw-Hill Inc.
28) Lal, R. 2000. Physical management of soils of the tropics: priorities for the 21st century. Soil Science. 165(3): 191-207.
29) Mamedov, A.I., Levy, G.J., Shainberg, I. and Letey, J. 2001. Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff. Soil Research. 39(6): 1293-1305.
30) Morgan, R.P.C. 1978. Field studies of rainsplash erosion. Earth Surface Processes. 3(3): 295-299.
31) Page, A.L. 1982. Method of soil analysis. Part 2: chemical and microbiological properties. Soil Science Society of American Madison. Wisconsin. USA.
32) Steiner, K.G. and Williams, R. 1996. Causes of soil degradation and development approaches to sustainable soil management. Weikersheim, Germany: Margraf Verlag. 93
33) United States. Department of Agriculture, 1972. Soil survey laboratory methods and procedures for collecting soil samples. US Government Printing Office.
34) Vaezi, A.R. 2014. Modeling runoff from semi-arid agricultural lands in Northwest Iran. Pedosphere. 24(5): 595-604.
35) Vaezi, A.R., Abbasi, M., Keesstra, S. and Cerdà, A. 2017. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. Catena. 157: 227-240.
36) Valette, G., Prévost, S., Lucas, L. and Léonard, J. 2006. SoDA project: A simulation of soil surface degradation by rainfall. Computers & Graphics. 30(4): 494-506.
37) Vilayvong, K., Yasufuku, N. and Ishikura, R. 2016. Rainfall-induced soil erosion and sediment sizes of a residual soil under 1D and 2D rainfall experiments. Procedia-Social and Behavioral Sciences. 218: 171-180.
38) Walkley, A. and Black, I.A. 1947. Determination of organic matter in the soil by chromic acid digestion. Soil Science. 63: 251-264.
39) Walling, D.E. 1988. Erosion and sediment yield research some recent perspectives. Journal of Hydrology. 100(1-3): 113-141.
40) Yao, J.J., Cheng, J.H., Zhou, Z.D., Sun, L. and Zhang, H.J. 2018. Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. Catena. 167: 411-421.
41) Zhao, L., Liang, X. and Wu, F. 2014. Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China. Journal of Arid Land. 6(4): 400-409.
_||_