نمونه سازی و تعیین مشخصات نانو جاذب دورگه از گرافن به منظور جذب نیکل دو ظرفیتی از محلولهای آبی
محورهای موضوعی : برگرفته از پایان نامهساناز فتحی 1 * , علیمراد رشیدی 2 , روشنک رضایی کلانتری 3 , عبدالرضا کرباسی 4
1 - دانشگاه آزاد علوم و تحقیقات
2 - پژوهشگاه صنعت نفت
3 - استاد دانشکده بهداشت دانشگاه علوم پزشکی ایران
4 - استاد دانشگاه تهران
کلید واژه: نیکل, دورگه, نانو جاذب, محلول آبی,
چکیده مقاله :
هدف از این مطالعه جداسازی سریع و راحت نیکل از محلول آبی با صرف هزینه ی کم و زمان کوتاه بوسیله جاذب نانو گرافن متخلخل مغناطیس شده(NPG@Fe3O4 ) است. جداسازی از بخش جامد از آب به وسیله ییک آهنربای دستی از ایجاد آلودگی ثانویه جلوگیری می کند. ریخت شناسی و سایر مشخصات جاذب NPG@Fe3O4 با استفاده از روش SEMو XRD تعیین گردید. تعداد 96 آزمایش به منظور بررسی میزان بهینه عوامل موثر بر فرآیند جذب انجام شد که اثر فراسنجهای مختلف همچون pHمحلول ،زمان جذب، مقدار لازم جاذب، دما و غلظت اولیه نیکل در روند کاهش غلظت آلاینده مورد بررسی و مقادیر بهینه هر کدام از عامل ها مشخص شد. نتایج نشان داد که میزان pH بهینه جاذب 6، مدت زمان بهینه تماس 30 دقیقه و مقدار لازم بهینه جاذب50 میلی گرم در لیتر بود. خطوط هم دمای جذب با استفاده از دو نمونه خطوط هم دما لانگمایر و فروندلیش و معادلات جنبشی سینتیک شبه درجه اول و دوم بررسی شدند. نتایج نشان دهنده هم خوان بودن میزان جذب با نمونه خطوط هم دما فروندلیش و معادله جنبشی سینتیک شبه درجه دوم بوده است. بررسی ترمودینامیک نشان داد که فرایند جذب با افزایش بی نظمی همراه و گرماگیر بوده است. حداکثر ظرفیت جذب برابر با 25/82 میلی گرم بر گرم بوده که نشان از جذب مطلوب نیکل از آب با استفاده از جاذب ساخت شده از گرافن بوده است.
The purpose of this study was a quick and easy separation of Ni(II) from an aqueous solution by a hand-held magnet to prevent secondary pollution. Morphology and other structures of NPG@Fe3O4 were characterized by the SEM and XRD techniques. The amount of optimal adsorption factors determined by carrying out 96 tests. The effect of various parameters on the absorption processes such as pH, contact time, adsorbent dosage, temperature and initial concentration in the reduction of contaminant concentrations were considered. The results showed that the optimum pH was 6.0, the optimal contact time was 30 minutes and the optimum adsorbent dosage was 50 mg/L. Adsorption isotherm models studied by both the Langmuir and the Freundlich isotherms was also followed by both the pseudo-first and second order models. The results also indicated that the showed adsorption process best fitted to Freundlich isotherm and pseudo-second order kinetic models. The Thermodynamic studies reviled that the adsorption process was endothermic and spontaneous. The maximum absorption capacity 82.25 mg/g indicated the optimal absorption of nickel from water by the synthesized nano adsorbent from graphene oxide.
1) دیوبند، ل. و برومندنسب، ف. 2012. بررسی کارایی نانوذرات تهیه شده از خاکستر برگ سدر در حذف سرب از محیطهای آبی. فصلنامه سلامت و محیط زیست 5(1), 51-62.
2) کریمی تکانلو، ل. فرزادکیا، م. محوی، ال. اسرافیلی، ع و گلشن، م. 2014. "ارزیابی فرآیند جذب سطحی یون های کادمیوم از فاضلاب سنتتیک با نانو ذرات آهن مغناطیسی ساخت شده.2014.. 171-184.
3) بهرامی، م. برومندنسب، س. کشکولی، ح. فرخیان فیروزی، ا و بابایی، ع 2013. "حذف کادمیوم از محلول های آبی با استفاده از نانوذرات مغناطیسی اصلاح شده.2013. 221-232.
4) مهراسبی، ک و کیا، ف. 2008. حذف فلزات سنگین از محیط آبی به وسیله یجذب سطحی بر روی پوست موز اصلاح شده. فصلنامه سلامت و محیط زیست 1(1), 57-66.
5) نبی، د. غ. پیشه، م. ح. ف. ، فاضلی، م. ح. 1998. بررسی جذب فلزات سنگین به وسیله ی خاک اره. محیط شناسی 24(21).
6) Alipour, T. S. 2010. Removal of cadmium from agricultural waste water using sugarcan bagasse. Iranian Chemistry Engeniering 29(2);99-107.
7) Alvarez, H., Opalinska, J., Zhou, L., Sohal, D., Fazzari, M. J., Yu, Y., Montagna, C., Montgomery, E. A., Canto, M,. and Dunbar, K. B. 2011. Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis. PLoS Genet 7(3); e1001356.
8) Bhaumik, M., Maity, A., Srinivasu, V., and Onyango, M. S., 2011. enhanced removal of Cr (VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. Journal of hazardous materials 190(1); 381-390.
9) Chandra, V., Park, J., Chun, Y., Lee, J., W., Hwang, I.-C,. and Kim, K. S., 2010. water-dispersible magnetite-reduced g,raphene oxide composites for arsenic removal. ACS nano 4(7); 3979-3986.
10) Chen X., Zhou S., Zhang L., You, T., and Xu, F., 2016. adsorption of heavy metals by Graphene Oxide/Cellulose hydrogel prepared from NaOH/Urea an aqueous solution. Materials 9(7); 582-594.
11) Daifullah, A., Yakout, S., and Elreefy, S., 2007. Adsorption of fluoride in aqueous solutions using KMnO 4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of hazardous materials 147(1); 633-643.
12) Demirbaş E., Kobya, M., Öncel, S., and Şencan S., 2002. Removal of Ni (II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource technology 84(3); 291-303.
13) Elias, D., Nair, R., Mohiuddin, T., Morozov S., Blake P., Halsall M., Ferrari A., Boukhvalov, D., Katsnelson, M., and Geim, A., 2009. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323(5914); 610-623.
14) Fathi, S., Rezaei Kalantary, R., Rashidi, A., and Karbassi, A., 2016. Hexavalent chromium adsorption from aqueous solutions using nanoporous graphene/Fe3O4 (NPG/Fe3O4: modeling and optimization). Desalination and Water Treatment, 1-10.
15) Hou, C., Zhang, Q., Zhu, M., Li, Y., and Wang, H., 2011. One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon 49(1), 47-53.
16) Iram, M., Guo, C., Guan, Y., Ishfaq, A., and Liu, H., 2010. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe 3 O 4 hollow nanospheres. Journal of hazardous materials 181(1); 1039-1050.
17) Kumar, R., Bishnoi, N. R., and Bishnoi, K., 2008. Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chemical Engineering Journal 135(3); 202-208.
18) Li, X., Cai, W., Colombo, L., and Ruoff, R. S., 2009. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters 9(12);4268-4272.
19) London, A., Cohen, M., and Schwartz, M., 2013. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7(10); 3389-3399.
20) Mohana, S., Acharya, B. K., and Madamwar, D., 2009. distillery spent wash: treatment technologies and potential applications. Journal of hazardous materials 163(1); 12-25.
21) Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J., and Geim, A., 2008. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters 100(1); 60-610.
22) Muñoz, R., and Gómez‐Aleixandre, C., 2013. Review of CVD synthesis of graphene. Chemical Vapor Deposition 19(10-11-12); 297-322.
23) Patterson, J. W., 1985. Industrial wastewater treatment technology.
24) Pourbeyram S., 2016. effective removal of heavy metals from aqueous solutions by graphene oxide–zirconium phosphate (GO–Zr-P) nanocomposite. Industrial & Engineering Chemistry Research 55(19); 5608-5617.
25) Pourmand, S., Abdouss, M., and Rashidi, A., 2015. Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent. Journal of Industrial and Engineering Chemistry 22; 8-18.
26) Rozaini, C., Jain, K., Oo, C., Tan, K., Tan, L., Azraa, A., and Tong, K. 2010. Optimization of nickel and copper ions removal by modified mangrove barks. International Journal of Chemical Engineering and Applications 1(1); 84-93.
27) Shirzad Siboni, M., Samadi, M., Rahmani, A., Khataee, A., Bordbar, M., and Samarghandi, M., 2010. Photocatalytic removal of hexavalet chromium and divalent nickel from aqueous solution by UV irradiation in the presence of titanium dioxide vanoparticles. Iranian Journal of Health and Environment 3(3); 261-270.
28) Siu, R. K., Lu, S. S., Li, W., Whang, J., McNeill, G., Zhang, X., Wu, B. M., Turner, A. S., Seim, III H. B., and Hoang, P., 2011. Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Engineering Part A 17(7-8); 1123-1135.
29) Vilela, D., Parmar, J., Zeng, Y., Zhao, Y., and Sánchez, S., 2016. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano letters 16(4); 2860-2866.
30) Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.-H., Bancroft, I., and Cheng, F., 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics 43(10); 9-35.
31) Wang, Y., Michel, F., M., Levard, C., Choi, Y., Eng, P. J. and Brown, Jr G., E. 2013. Competitive sorption of Pb (II) and Zn (II) on polyacrylic acid-coated hydrated aluminum-oxide surfaces. Environmental science & technology 47(21); 12131-1239.
32) Wu, T., Cai, X., Tan, S., Li, H., Liu, J. and Yang, W., 2011. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal 173(1); 144-149.
33) Yang, Q., Lin, F., Wang, L., and Pan, Q., 2009. Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11. Theoretical and applied genetics 118(6); 1027-1034.
34) Yu, H., L., Li, Y. H., and Wu, K. M., 2011. Risk Assessment and ecological effects of transgenic bacillus thuringiensis crops on non‐target organisms. Journal of Integrative Plant Biology 53(7); 520-38.
35) Zhao, G., Li, J., Ren, X., Chen, C. and Wang, X., 2011. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science & technology 45(24); 10454-10462.
36) Zhao, Y.G., Shen, H.Y., Pan, S.D., and Hu, M.Q., 2010. Synthesis, characterization and properties of ethylenediamine-functionalized Fe 3 O 4 magnetic polymers for removal of Cr (VI) in wastewater. Journal of hazardous materials 182(1); 295-302.
37) Zheng, H., Liu, D., Zheng, Y., Liang, S., and Liu, Z., 2009. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of hazardous materials 167(1); 141-147.
_||_