بررسی میدان سرعت و تاثیر فراسنج های هیدرولیکی و هندسی بر میزان مواد معلق ورودی به نهر های انحرافی با استفاده از روش محاسبات نرم و نرم افزار ANSYS-CFX
محورهای موضوعی : برگرفته از پایان نامهسهراب کریمی 1 , حجت کرمی 2 , جواد اسفندیاری 3
1 - گروه مهندسی عمران واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
2 - استادیار دانشکده مهندسی عمران دانشگاه سمنان
3 - گروه مهندسی عمران واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.
کلید واژه: شبکه عصبی مصنوعی, آبگیر جانبی, نرم افزار ANSYS-CFX, میدان سرعت, رسوب ورودی,
چکیده مقاله :
آبگیرهای جانبی از جمله سازه های هیدرولیکی هستند که برای کنترل و انحراف بخشی از جریان در شبکه های آبیاری مورد استفاده قرار می گیرند. در این مطالعه میدان سرعت و تاثیر پارامترهای هیدرولیکی و هندسی بر میزان رسوب ورودی به آبگیرها با استفاده از روش محاسبات نرم و نرم افزار ANSYS-CFX بررسی می شود. ابتدا ، مدل آزمایشگاهی با استفاده از نرم افزار مدلسازی شده است. نتایج صحت سنجی مطابقت نسبتا خوب CFD با مدل آزمایشگاهی را نشان می دهد. با استفاده از داده های آزمایشگاهی و CFD، شبکه عصبی مصنوعی برای بررسی میدان سرعت جریان در زوایای آبگیری 30، 60و 90 درجه مختلف طراحی شده است. نتایج حاصل ازANN با نتایج آزمایشگاهی در سه زاویه انحراف با یکدیگر مقایسه شده و دقت قابل قبول ANNدر ارزیابی میدان سرعت جریان را نشان می دهد. جهت بررسی رسوب جریان، شبیهسازی عددی جریان رسوبی مدل آزمایشگاهی دیگری صورت گرفت. از میان پارامترهای اصلی موثر بر جریان، اثر زوایای آبگیری، نسبت دبی آبگیری بر نسبت رسوب ورودی به آبگیر بررسی و با نتایج آزمایشگاهی مقایسه شده که مطابقت خوبی بین آن ها وجود دارد. در یک نسبت ثابت آبگیری، با افزایش زاویه آبگیری نسبت رسوب ورودی به آبگیر افزایش مییابد و با افزایش نسبت دبی آبگیری، مقدار رسوبات ورودی به آبگیر به دلیل افزایش سرعت در آبگیر در حین ثابت بودن عمق جریان وافزایش شدت حمل رسوبات در کانال آبگیر، بیشتر میشود همچنین به ازای نسبت ثابت دبی آبگیری، با افزایش عدد فرود ورودی، نسبت رسوب ورودی کاهش مییابد.
Intakes are one of the varied types of channel and river- water- intake structures. The experimental model is first simulated through ANSYS- CFX software. The verification results indicate that the results of the numerical model correspond fairly well to the results of the experimental model . using a set of experimental data and a numerical model, an artificial neural network has been designed to predict the velocity field within 30, 60 and 90 degrees deviation angles.The comparison shows that the ANN model has an acceptable level of accuracy in predicting the velocity field of the flow. The sediment flow of the experimental model was then numerically simulated with regard to the results in order to examine the sedimentation of the flow. Among the main parameters which affect the flow, the effects of diversion angles, intake discharge ratio were examined on the ratio of the sediment entering the weir and they were compared with the experimental results. The results were fairly consistent. In a constant diversion ration, the ratio of the sediment entering the weir increases as the diversion angle increases and the amount of the sediment entering the weir increases as the intake discharge ratio increases due to the increase in the velocity while the flow depth is constant and the sediments are being increasingly transferred in the weir. Also, as the intake Froude number increases, the ratio of the sediment entering the channel decrease for a constant intake discharge.
منابع
1) صفرزاده ا. و صالحی نیشابوری ع.ا . 1387. مطالعه هیدروپویاییی الگوی جریان آشفته و پدیده انتقال مواد معلق در رودخانه کارون با استفاده از نمونه عددی دو بعدی، سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز.
2) عباسی ع.ا . 1382 . مطالعه آزمایشگاهی تنظیم مواد معلق در آبگیرهای جانبی در مسیرهای مستقیم، رساله دکتری، دانشگاه تربیت مدرس، دانشکده فنی و مهندسی عمران.
3) Baghalian, S., Bonakdari, H., Nazari, F., and Fazli, M. 2012. Closed-form solution for flow field in curved channels in comparison with experimental and numerical analyses and artificial neural network. Engineering Applications of Computational Fluid Mechanics 6(4): 514-526.
4) Brakdoll, B.D. and Ettema R.O. 1999. Sediment control at lateral diversions: limits and enhancements to vane Use. J.Hydraul. Eng. ASCE 129(2): 83-87.
5) Bilhan, O., Emiroglu, M. E., and Kisi, O. 2011. Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Advances in Engineering Software 42(4): 208-214
6) Bonakdari, H., Baghalian, S., Nazari, F., and Fazti, M. 2011. Numerical analysis and prediction of the velocity field in curved open channel using artificial neural network and genetic algorithm. Engineering Applications of Computational Fluid Mechanics 5(3): 384-396.
7) Dursun, O.F., Kaya, N., and Firat, M. 2012. Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of Hydrology 426: 55-62.
8) Ebtehaj, I., and Bonakdari, H. 2013. Evaluation of sediment transport in sewer using artificial neural network.
9) Engineering Applications of Computational Fluid Mechanics 7(3): 382-392.
10) Issa, R, I., and Oliveira, P. J. (1944). Numerical prediction of phase separation in tow-phase flow through t-junction. Comp. and Fluids 23(2): 347-372.
11) Kasthuri, B., and Pundarikanthan, N.V. 1987. Discussion of separation zone at open channel junction'. Journal of hydraulic Engineering113(4):543-544.
12) Kim, B., Lee, S.E., Song, M.Y., Choi, J.H., Ahn, S.M., Lee, K.S., et al. 2008. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macro invertebrates in a polluted stream. Sci Total Environ 390:262-274.
13) Kisi, O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J 50(4):683-696.
14) Kisi, O. 2008. River flow forecasting and estimation using different artificial neural network techniques. Hydrology Research 39(1):27-40.
15) Kisi, O., Emiroglu, M.E., Bilhan, O., and Guven, A. 2012. Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Systems with Applications 39: 3454–3460.
16) Melesse, A., Ahmad, S., McClain, M., Wang, X., and Lim, Y. 2011. Suspended sediment load prediction of river systems: An artificial neural .network approach. Agricultural Water Management 98(5): 855-866.
17) Murthy, K.K., and Shettar, A.S. 1996. A Numerical study of division of flow in open channel, J. Hydr. Res 34 (5): 651-675.
18) Nakato, T. 1992. A hydraulic model study: Design of sediment-control devices for the intakes near river IIHR limited Distribution Rep. No. 194, Iowa Institute of Hydraulic Research, Iowa City, Iowa.
19) Neary, V.S., Odgaard, A.J. 1993. Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering 119(11):1224-1230.
20) Olsen, N.B.R. 2006. A three-dimensional numerical model for simulation of sediment movements in water intakes withmoltiblock option. Department of Hydraulic and Environmental Engineering, the Norwegian University of Science and Technology.
21) Raudkivi, A. J. 1993. Sedimentation exclusion and removal of sediment from diverted water. IAHR. AIRH. Hydraulics Structures.
22) Ramamurthy, A.S., junying qu and diep VO. 2007. Numerical and experimental study of dividing open-channels flows. Journal of Hydraulic Engineering 130(10): 1135-1144.
23) Smith, M. 1993. Neural networks for statistical modelling, Thomson Learning.
24) Taylor, E. 1944. Flow characteristics at rectangular open channel junction, Journal of Hydraulic Engineering 10(6):893-902.
25) Wilcox, D. C. 2000. Turbulence modeling for CFD, 2nd Ed., DCW Industries, Inc.
_||_