اثر ضد باکتریایی نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان بر روی باکتریهای ایجادکننده عفونت در زخم های پوستی
محورهای موضوعی : میکروبیولوژینازیلا فرهنگی قلعه جوقی 1 , محمد رضا فرهپور 2 , مجتبی محمدی 3 , سعید جعفری راد 4 , ساناز مهمازی 5
1 - دانشجوی دکتری تخصصی، گروه میکروبیولوژی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
2 - دانشیار، گروه علوم درمانگاهی، دانشکده دامپزشکی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران.
3 - استادیار، گروه میکروبیولوژی، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران
4 - دانشیار، مرکز تحقیقات علوم پایه، دانشگاه تبریز، تبریز، ایران
5 - استادیار، گروه ژنتیک، مرکز تحقیقات بیولوژی دانشگاه آزاد اسلامی واحد زنجان، زنجان، ایران
کلید واژه: پلیمرهای قابلتجزیه, فعالیت ضد باکتریایی, باکتریهای بیماریزا, حداقل غلظت بازدارندگی, نانو کامپوزیت,
چکیده مقاله :
افزایش تعداد میکروارگانیسمهای مقاوم به آنتیبیوتیک از جمله گونه های مقاوم اشریشیا کلی، اسینتوباکتر بومانی و استرپتوکوکوس پیوژنز در زخمها، تلاشها را در جهت سنتز ترکیبات ضد باکتریایی نانو ساختار برای غلبه بر میکروارگانیسمهای مقاوم به آنتیبیوتیک افزایش داده است. این مطالعه باهدف بررسی اثرات ضد باکتریایی و ضد قارچی نانوذره لاتریت و نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان از طریق بررسی حداقل غلظت بازدارندگی، حداقل غلظت کشندگی و سنجش زمان مرگ باکتریهای اشریشیا کلی، پروتئوس میرابیلیس، اسینتوباکتر بومانی و استرپتوکوکوس پیوژنز و قارچ کاندیدا آلبیکنس انجام شد. بر اساس نتایج بهدستآمده، نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان در غلظت 5 میکروگرم بر میلیلیتر بر روی اشریشیا کلی و پروتئوس میرابیلیس و در غلظت 5/2 میکروگرم بر میلیلیتر بر روی اسینتوباکتر بومانی و استرپتوکوکوس پیوژنز دارای اثرات مهارکنندگی بودند. اختلاف معنیداری بین تأثیر ضد باکتریایی نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان مشاهده نگردید (p=1.00). همچنین نانوذره لاتریت در مقایسه با نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان اثر ضد باکتری ضعیفتری نشان داد. هیچکدام از ترکیبات استفاده شده در این مطالعه اثر ضد قارچی از خود نشان ندادند. بیشترین فعالیت ضد باکتریایی نانو کامپوزیتها در فواصل بین 6 تا 24 ساعت مشاهده شد. درمجموع، نانو کامپوزیتهای نقره/لاتریت و نقره/لاتریت/کیتوزان دارای فعالیت آنتیباکتریایی روی برخی از باکتریهای ایجادکننده عفونت در زخم های پوستی بودند.
1. Alavi. M..Rai. M. (2019).Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Applied microbiology and biotechnology. 103: 8669-8676.
2. Amini. M.H..Ahmady. A..Zhakfar. A.M..Sediqi. M.N..Babak. G. (2019).Preliminary Phytochemical Profile, in vitro Antioxidant and Sun Protective Activities of Alhagi pseudalhagi and Elaeagnus angustifolia L. Journal of Pharmaceutical Research International. 31: 1-13.
3. Behroozian. S. (2019).Antimicrobial properties of Kisameet clay, a natural clay mineral from British Columbia, Canada. Journal.
4. Bharti. S..Mukherji. S..Mukherji. S. (2021).Enhanced antibacterial activity of decahedral silver nanoparticles. Journal of Nanoparticle Research. 23: 1-18.
5. Biharee. A..Sharma. A..Kumar. A..Jaitak. V. (2020).Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia. 146: 104720.
6. Chowdhury. P..Roy. B..Mukherjee. N..Mukherjee. S..Joardar. N..Mondal. M.K..Roy. D..Sinha Babu. S.P. (2018).Chitosan biopolymer functionalized gold nanoparticles with
controlled cytotoxicity and improved antifilarial efficacy. Advanced Composites and Hybrid Materials. 1: 577-590.
7. Daghian. S.G..Farahpour. M.R..Jafarirad. S. (2021).Biological fabrication and electrostatic attractions of new layered silver/talc nanocomposite using Lawsonia inermis L. and its chitosan-capped inorganic/organic hybrid: Investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa infected wound healing. Materials Science and Engineering: C. 128: 112294.
8. Das. C.A..Kumar. V.G..Dhas. T.S..Karthick. V..Govindaraju. K..Joselin. J.M..Baalamurugan. J. (2020).Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatalysis and Agricultural Biotechnology. 27: 101593.
9. Ehsani. P..Farahpour. M.R..Mohammadi. M..Mahmazi. S..Jafarirad. S. (2021).Green fabrication of ZnO/magnetite-based nanocomposite-using Salvia officinalis extract with antibacterial properties enhanced infected full-thickness wound. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 628: 127362.
10. Espinosa-Cristóbal. L..Martínez-Castañón. G..Martínez-Martínez. R..Loyola-Rodriguez. J..Patino-Marin. N..Reyes-Macias. J..Ruiz. F. (2009).Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters. 63: 2603-2606.
11. Espinosa-Cristóbal. L.F..López-Ruiz. N..Cabada-Tarín. D..Reyes-López. S.Y..Zaragoza-Contreras. A..Constandse-Cortéz. D..Donohué-Cornejo. A..Tovar-Carrillo. K..Cuevas-González. J.C..Kobayashi. T. (2018).Antiadherence and antimicrobial properties of silver nanoparticles against Streptococcus mutans on brackets and wires used for orthodontic treatments. Journal of Nanomaterials. 2018:
12. Franconetti. A..Carnerero. J.M..Prado-Gotor. R..Cabrera-Escribano. F..Jaime. C. (2019).Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles. Carbohydrate polymers. 207: 806-814.
13. Garibo. D..Borbón-Nuñez. H.A..de León. J.N.D..García Mendoza. E..Estrada. I..Toledano-Magaña. Y..Tiznado. H..Ovalle-Marroquin. M..Soto-Ramos. A.G..Blanco. A. (2020).Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific reports, 10: 1-11.
14. Gharehpapagh. A.C..Farahpour. M.R..Jafarirad. S. (2021).The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin-resistant Staphylococcus aureus. International journal of biological macromolecules. 183: 447-456.
15. Guo. Y..Song. G..Sun. M..Wang. J..Wang. Y. (2020).Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology. 10: 107.
16. Gupta. A..Singh. R..Purwar. C..Chauhan. D..Singh. J. (2003).Two pentacycIic triterpenes from the stem of Calotropis procera.
17. Hajilou. H..Farahpour. M.R..Hamishehkar. H. (2020).Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds. International Journal of Biological Macromolecules. 164: 2358-2369.
18. Joughi. N.F.G..Farahpour. M.R..Mohammadi. M..Jafarirad. S..Mahmazi. S. (2022).Investigation on the antibacterial properties and rapid infected wound healing activity of silver/laterite/chitosan nanocomposites. Journal of Industrial and Engineering Chemistry.
19. Kasim. N.A..Azmi. N.A.C..Mukri. M..Noor. S.N.A.M. Effect on physical properties of laterite soil with difference percentage of sodium bentonite. in AIP Conference Proceedings. 2017. AIP Publishing LLC.
20. Keshari. A.K..Srivastava. R..Singh. P..Yadav. V.B..Nath. G. (2020).Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and integrative medicine. 11: 37-44.
21. Khameneh. B..Iranshahy. M..Soheili. V..Bazzaz. B.S.F. (2019).Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control 8: 1-28.
22. Khare. C.P. (2008).Indian medicinal plants: an illustrated dictionary. Journal
23. Khezri, K..Farahpour, M.R..Rad, S.M. (2020).Efficacy of Mentha pulegium essential oil encapsulated into nanostructured lipid carriers as an in vitro antibacterial and infected wound healing agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 589: 124414.
24. Kumar-Krishnan. S..Prokhorov. E..Hernández-Iturriaga. M..Mota-Morales. J.D..Vázquez-Lepe. M..Kovalenko. Y..Sanchez. I.C..Luna-Bárcenas. G. (2015).Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal 67: 242-251.
25. Kuwabara. M..Sato. Y..Ishihara. M..Takayama. T..Nakamura. S..Fukuda. K..Murakami. K..Yokoe. H..Kiyosawa. T. (2020).Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. Wound Medicine 28: 100183.
26. Lemougna. P.N..Melo. U.F.C..Kamseu. E..Tchamba. A.B. (2011).Laterite based stabilized products for sustainable building applications in tropical countries: review and prospects for the case of Cameroon. Sustainability 3: 293-305.
27. Liao. S..Zhang. Y..Pan. X..Zhu. F..Jiang. C..Liu. Q..Cheng. Z..Dai. G..Wu. G..Wang. L. (2019).Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International journal of nanomedicine 14: 1469.
28. Loo. Y.Y..Rukayadi. Y..Nor-Khaizura. M.-A.-R..Kuan. C.H..Chieng. B.W..Nishibuchi. M..Radu. S. (2018).In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology 9: 1555.
29. Maciel. M.V.d.O.B..da Rosa Almeida. A..Machado. M.H..Elias. W.C..da Rosa. C.G..Teixeira. G.L..Noronha. C.M..Bertoldi. F.C..Nunes. M.R..de Armas. R.D. (2020).Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatalysis and Agricultural Biotechnology 28: 101746.
30. Magana. S..Quintana. P..Aguilar. D..Toledo. J..Angeles-Chavez. C..Cortes. M..Leon. L..Freile-Pelegrín. Y..López. T..Sánchez. R.T. (2008).Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical 281: 192-199.
31. Mulat. M..Khan. F..Muluneh. G..Pandita. A. (2020).Phytochemical profile and antimicrobial effects of different medicinal plant: current knowledge and future perspectives. Current Traditional Medicine 6: 24-42.
32. Nemati. A..Masoorian. E..Rajabpour. M..Darb Emamie. A..Jafari. M..Pourmand. M.R. (2021).Frequency and antimicrobial susceptibility patterns of bacterial agents isolated
from wound infections of inpatients at a university hospital in Tehran. Scientific Journal of Kurdistan University of Medical Sciences 26: 71-84.
33. Nguyen. T.T..Guedj. J..Chachaty. E..de Gunzburg. J..Andremont. A..Mentré. F. (2014).Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted. PLoS computational biology 10: e1003840.
34. Organization. W.H. (2017).Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Journal
35. Sondi. I..Salopek-Sondi. B. (2004).Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science 275: 177-182.
36. Usman. A..Onore. R.O..Oforghor. O.A..Mohammed. J..Usman. N.L. (2010).Total Phenolic and Flavonoid Contents, Antioxidant Activity and Phytochemical Screening of Calotropis Procera Stem Bark Extracts. Communication in Physical Sciences 5:
37. Williams. L.B..Metge. D.W..Eberl. D.D..Harvey. R.W..Turner. A.G..Prapaipong. P..Poret-Peterson. A.T. (2011).What makes a natural clay antibacterial? Environmental science & technology 45: 3768-3773.
38. Yoon. K.-Y..Byeon. J.H..Park. J.-H..Hwang. J. (2007).Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment 373: 572-575.
39. Zhao. X..Liang. Y..Huang, Y..He. J..Han. Y..Guo. B. (2020).Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing. Advanced Functional Materials 30: 1910748.