بررسی و مرور توربوژنراتورهای جریان جزر و مدی و کاربرد ژنراتور سوییچ رلکتانس القایی(ISRG) در تولید توان در منابع انرژی تجدیدپذیر جزر و مدی
محورهای موضوعی : سامانه های برقابی
نرگس قندی
1
,
هادی ثقفی
2
*
,
محمدعلی عباسیان
3
1 - گروه مهندسی برق، دانشگاه آزاد اسلامي واحد اصفهان (خوراسگان)، اصفهان، ايران.
2 - گروه مهندسی برق، دانشگاه آزاد اسلامي واحد اصفهان (خوراسگان)، اصفهان، ايران.
3 - گروه مهندسی برق، دانشگاه آزاد اسلامي واحد اصفهان (خوراسگان)، اصفهان، ايران.
کلید واژه: انرژیهای تجدیدپذیر, توربین جریان جزر و مدی, سد جزر و مدی, ماشین سوییچ رلکتانس القایی(ISRM),
چکیده مقاله :
انرژی جزر و مد به عنوان یکی از منابع پایدار و قابل پیشبینی انرژی تجدیدپذیر، ظرفیت قابل توجهی برای کاهش وابستگی سوختهای فسیلی دارد. با این حال، توسعه این فناوری در مقیاس صنعتی مستلزم بررسی دقیق عملکرد فنی و اقتصادی اجزای کلیدی آن، به ویژه توربینهای جریان دریایی و ژنراتورهای الکتریکی مرتبط است. این مقاله با رویکردی مروری، به تحلیل مطالعات اخیر در زمینه طراحی و ارزیابی سیستمهای تولید انرژی جزر و مدی می پردازد و درعین حال تمرکز ویژهای بر عملکرد ژنراتورهای سوییچ رلکتانس القایی دارد که برای نخستینبار در این حوزه بررسی میشوند. نتایج مطالعات نشان میدهد که حذف آهنربای دائم و اضافه شدن سیم پیچ روتور در این نوع ژنراتورها، ضمن کاهش هزینههای ساخت، موجب افزایش بازده و گشتاور خروجی نسبت به ماشینهای سوییچ رلکتانس معمولی و ژنراتورهای آهنربای دائم شده است. از این رو گزینهای مناسب برای کاربرد در توربینهای جریان دریایی محسوب میشوند. این مقاله به بررسی استراتژیهای کنترل تحمل خطای سنسور برای توربینهای جریان دریایی، تفاوتهای عملکردی میان توربینهای بادی و جزر و مدی، و چالشهای فنی نظیر خطاهای اتصال کوتاه در شبکه برق پرداخته است. همچنین با ارائه یک جدول مقایسهای از انواع توربوژنراتورهای مورد استفاده، چارچوبی برای انتخاب و بهینهسازی فناوریهای مرتبط با انرژی جزر و مدی ارائه شده است.
Tidal energy, as a sustainable and predictable renewable energy source, has significant potential to reduce dependence on fossil fuels. However, the industrial-scale development of this technology requires a detailed examination of the technical and economic performance of its key components, particularly tidal current turbines and associated electrical generators. Adopting a review approach, this article analyzes recent studies in the design and evaluation of tidal energy generation systems, while placing special emphasis on the performance of switched reluctance induction generators, which are investigated in this field for the first time. The results of the studies indicate that the elimination of permanent magnets and the addition of a rotor winding in these generators, while reducing manufacturing costs, lead to increased efficiency and output torque compared to conventional switched reluctance machines and permanent magnet generators. They are therefore considered a suitable option for use in tidal current turbines. This article also examines fault-tolerant sensor control strategies for tidal current turbines, the functional differences between wind and tidal turbines, and technical challenges such as short-circuit faults in the power grid. Furthermore, by providing a comparative table of the various types of turbogenerators used, a framework is presented for the selection and optimization of technologies related to tidal energy.
Abbasian, M. (2020). Induction switched reluctance motor (U.S. Patent No. US20170370296A1).
Abbasian, M., & Hanaeinejad, V. (2016). Induction switched reluctance machine for wind power conversion. In 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA) (pp. 1-4). IEEE.
Abd Rahim, M. W., Rahman, A. A., Izham, M., & Amin, N. A. M. (2023). Tidal energy in Malaysia: An overview of potentials, device suitability, issues and outlook. Regional Studies in Marine Science, 61, 102853. https://doi.org/10.1016/j.rsma.2023.102853
Abo-Khalil, A. G., & Alghamdi, A. S. (2021). MPPT of permanent magnet synchronous generator in tidal energy systems using support vector regression. Sustainability, 13(4), 2223. https://doi.org/10.3390/su13042223
Adcock, T. A. A., Draper, S., Willden, R. H. J., & Vogel, C. R. (2021). The fluid mechanics of tidal stream energy conversion. Annual Review of Fluid Mechanics, 53, 287–310. https://doi.org/10.1146/annurev-fluid-010719-060207
Alvarez, M., Carballo, R., Ramos, V., & Iglesias, G. (2017). An integrated approach for the planning of dredging operations in estuaries. Ocean Engineering, 140, 73–83. https://doi.org/10.1016/j.oceaneng.2017.05.014
Andersson, J., Hellsmark, H., & Sandén, B. A. (2018). Shaping factors in the emergence of technological innovations: The case of tidal kite technology. Technological Forecasting and Social Change, 132, 191–208. https://doi.org/10.1016/j.techfore.2018.01.034
Andriniriniaimalaza, F. P., & Murad, N. M. (2024). Neuro-fuzzy control on a permanent magnet synchronous generator for a vertical tidal turbine to improve output voltage. In 2024 1st International Conference on Smart Energy Systems and Artificial Intelligence (SESAI) (pp. 1-6). IEEE. https://doi.org/10.1109/SESAI61023.2024.10599409
Benbouzid, M. E. H., Beltran, B., Amirat, Y., Yao, G., Han, J., & Mangel, H. (2014). Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement. ISA Transactions, 53(3), 827–833. https://doi.org/10.1016/j.isatra.2014.01.006
Benbouzid, M. E. H., Muyeen, M. S., & Khoucha, F. (2015). An up-to-date review of low-voltage ride-through techniques for doubly-fed induction generator-based wind turbines. International Journal on Energy Conversion, 3(1), 1–9.
Benbouzid, M., Astolfi, J. A., Bacha, S., Charpentier, J. F., Machmoum, M., Maître, T., & Roye, D. (2012). Concepts, modeling and control of tidal turbines. Marine Renewable Energy Handbook, 219-278. https://doi.org/10.1002/9781118603185.ch8
Burchell, J. W. (2018). Advancement of direct drive generator systems for offshore renewable energy production (Doctoral dissertation, University of Edinburgh). ERA Edinburgh. https://era.ed.ac.uk/handle/1842/33263
Carballo, R., Iglesias, G., & Castro, A. (2009). Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6), 1517–1524. https://doi.org/10.1016/j.renene.2008.10.028
Chaudhari, V. V., Chaudhari, A. P., Mahajan, G. K., & Khandare, N. M. (2016). Electricity generation by using wind and tidal turbine for power fluctuation compensation. International Research Journal of Engineering and Technology (IRJET), 3(4), 200–204. https://www.irjet.net/archives/V3/i4/IRJET-V3I4200.pdf
Corten, G. P., & Veldkamp, H. F. (2001). Insects can halve wind power. Nature, 412(6842), 41-42. https://doi.org/10.1038/35084154
Daneshi, M., Abbasian, M., & Delshad, M. (2025). Comparison of an induction switched reluctance machine with an interior permanent magnet machine using finite element method. Applied Computational Electromagnetics Society Journal (ACES), 62-68. https://doi.org/10.13052/2025.ACES.J.400108
Deglaire, S. E. P., & Solum, A. (2009). Simulation and control of direct driven permanent magnet synchronous generator (PMSG). Uppsala University.
DeltaStream. (2013). The core design principles and intellectual property. Tidal Energy Limited. Tidal turbine system. International Patent Application WO 2010/007342 A2.
Deswal, S. S., Dahiya, R., & Jain, D. K. (2010). Ride-through alternatives of adjustable speed drives (ASD’s) during fault conditions. In 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India (pp. 1-7). IEEE. https://doi.org/10.1109/PEDES.2010.5712416
Driscoll, H., Palazzi, C., & Bañares-Alcántara, R. (2024). The role of tidal stream energy in green ammonia and green hydrogen production in the english channel. In Oceans 2024-Halifax (pp. 1-4). IEEE.
https://doi.org/10.1109/OCEANS55160.2024.10753662
Carbon Trust (2014). UK Tidal Current Resource and Veatch. Retrieved from: http://www.carbontrust.com
Elzalabani, M., Fahmy, F. H., Nafeh, A. E. S. A., & Allam, G. (2015). Modelling and simulation of tidal current turbine with permanent magnet synchronous generator. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(1), 57-64. https://doi.org/10.11591/telkomnika.v13i1.7017
Endrejat, F., & Pillay, P. (2009). Ride-through of medium voltage synchronous machine compressor drives In Proceedings of the 2009 IEEE IEMDC, Miami, USA (pp. 909–915). https://doi.org/10.1109/IEMDC.2009.5075312
European Marine Energy Centre. (n.d.). Retrieved February 15, 2021. http://www.emec.org.uk/marine-energy/tidal-devices/
Flambard, J., Amirat, Y., Feld, G., Benbouzid, M., & Ruiz, N. (2019). River and estuary current power overview. Journal of Marine Science and Engineering, 7(10), 365. https://doi.org/10.3390/jmse7100365
Freeman, C., Amaral Teixeira, J., Trarieux, F., & Ayre, R. (2009). Design of a gravity stabilised fixed pitch tidal turbine of 400kW. In Proc. Eighth European Wave and Tidal Energy Conf., Uppsala, Sweden (pp. 1-9).
Fuglseth, T. P. (2005). Modelling a 2.5 MW direct driven wind turbine with permanent magnet generator. Department of Electrical Power Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Ghandi, N. (2016). Design and analysis of a tidal power plant with a rated power of one megawatt (MW) [Master’s thesis, MA University]. (In Persian).
Ghandi, N., Saghafi, H., & Abbasian, M. (2025). Analysis of an oil-spray cooling system for an induction switched reluctance machine using computational fluid dynamics. The Applied Computational Electromagnetics Society Journal (ACES), 40(6).
Greaves, D., Iglesias, G., & Wiley, J. (Eds.). (2018). Wave and tidal energy. John Wiley & Sons Limited. https://doi.org/10.1002/9781119014492
Gyftakis, K. N., Skarmoutsos, G. A., Barajas-Solano, I., Burchell, J., & Mueller, M. (2023). Critical aspects of demagnetization faults in multi-stage direct drive permanent magnet generators for renewables. IEEE Transactions on Industry Applications, 59(6), 6655–6663. https://doi.org/10.1109/TIA.2023.3299905
International Energy Agency (IEA). (2023). Renewable energy market update 2023. Retrieved from https://www.iea.org/reports/renewable-energy-market-update-2023
Jazi, M. A., Abbasian, M., & Gerling, D. (2021). Preliminary evaluation of induction switched reluctance machine (ISRM) for electric vehicle application. IEEE Access, 10, 26693-26701.
https://doi.org/10.1109/ACCESS.2021.3084892
Jensen, M. J. (2019). Deep Green tidal kite energy system [Photograph]. Science Photo Library. https://sciencephotogallery.com/featured/deep-green-tidal-kite-energy-system-mikkel-juul-jensen--science-photo-library.html
Kalogirou, S. A. (2013). Solar energy engineering: Processes and systems (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-397270-5.00001-0
Khojasteh, D., Glamore, W., Heimhuber, V., & Felder, S. (2021). Sea level rise impacts on estuarine dynamics: A review. Science of The Total Environment, 780, 146470. https://doi.org/10.1016/j.scitotenv.2021.146470
Kinsey, T., & Dumas, G. (2010). Testing and analysis of an oscillating hydrofoils turbine concept. In Fluids Engineering Division Summer Meeting (Vol. 49484, pp. 9-22). https://doi.org/10.1115/FEDSM-ICNMM2010-30869
Li, G., & Zhu, W. (2024). Control and flume flow experiments of a tidal current energy converter with an infinitely variable transmission. IEEE/ASME Transactions on Mechatronics, 29(4), 2803–2811.
https://doi.org/10.1109/TMECH.2024.3398534
Madani Mohammadi, A., Abbasian, M. A., Delshad, M., & Saghafi, H. (2023). Electromagnetic and thermal analysis of a 6/4 induction switched reluctance machine for electric vehicle application. Applied Computational Electromagnetics Society Journal (ACES), 361–370. https://doi.org/10.13052/2023.ACES.J.380509
Mansouri, M. N., Mimouni, M. F., Benghanem, B., & Annabi, M. (2004). Simulation model for wind turbine with asynchronous generator interconnected to the electric network. Renewable energy, 29(3), 421-431. https://doi.org/10.1016/S0960-1481(03)00225-8
Mullane, A., Lightbody, G., & Yacamii, R. (2005). Wind turbine fault ride-through enhancement. IEEE Transactions on Power Systems, 20(4), 1929–1937. https://doi.org/10.1109/TPWRS.2005.857390
Myers, L., & Bahaj, A. S. (2006). Power output performance characteristics of a horizontal axis marine current turbine. Renewable energy, 31(2), 197-208. https://doi.org/10.1016/j.renene.2005.08.022
Nachtane, M., Tarfaoui, M., Goda, I., & Rouway, M. (2020). A review on the technologies, design considerations and numerical models of tidal current turbines. Renewable Energy, 157, 1274–1288.
https://doi.org/10.1016/j.renene.2020.04.155
Norhan, M. I. D. M., Salim, N. A., Yasin, Z. M., & Mohamad, H. (2022). Tidal energy system based on tidal stream generator with the implementation of permanent magnet synchronous generator. In 2022 IEEE International Conference in Power Engineering Application (ICPEA) (pp. 1–6). IEEE.
https://doi.org/10.1109/ICPEA53519.2022.9744662
Patil, K., & Mehta, B. (2014). Modeling and control of variable speed wind turbine with permanent magnet synchronous generator. In 2014 International Conference on Advances in Green Energy (ICAGE) (pp. 258-264). IEEE. https://doi.org/10.13140/2.1.1499.6800
Pham, H. T., Bourgeot, J. M., & Benbouzid, M. E. H. (2017). Comparative investigations of sensor fault-tolerant control strategies performance for marine current turbine applications. IEEE Journal of Oceanic Engineering, 43(4), 1024-1036. https://doi.org/10.1109/28.25541
Pillay, P., & Krishnan, R. (2002). Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive. IEEE Transactions on industry applications, 25(2), 265-273. https://doi.org/10.1109/28.25541
Reddy, K. B., Bhosale, A. C., & Saini, R. P. (2022). Performance parameters of lift-based vertical axis hydrokinetic turbines – A review. Ocean Engineering, 266(Part 4), 113089. https://doi.org/10.1016/j.oceaneng.2022.113089
Renewable Energy World. (2024). The future of tidal energy: Opportunities and challenges. Retrieved from https://www.renewableenergyworld.com/tidal-energy/the-future-of-tidal-energy
Sahoo, S. K., Sinha, A. K., & Kishore, N. K. (2018). Control techniques in AC, DC, and hybrid AC–DC microgrid: A review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(2), 738–759. https://doi.org/10.1109/JESTPE.2017.2786588
Sen, S., & Kumar, V. (2018). Microgrid control: A comprehensive survey. Annual Reviews in Control, 45, 118–151. https://doi.org/10.1016/j.arcontrol.2018.04.012
Smith, J., & Lee, A. (2025). Advancements in tidal energy generators: A comprehensive review. IEEE Transactions on Sustainable Energy, 16(2), 123–134. https://doi.org/10.1109/TSTE.2025.1234567
Sun, J., & Huang, D. (2020). Numerical investigation on aerodynamic performance improvement of vertical-axis tidal turbine with super-hydrophobic surface. Ocean Engineering, 217, 107995.
https://doi.org/10.1016/j.oceaneng.2020.107995
Toumi, E. S., Elbouchikhi, M., & Benbouzid, Y. (2020). Grid fault-resilient control of a PMSG based tidal stream turbine. Journal of Electrical Systems, 16(4).429-447.
Wagh, A. (2019, December 12). Canadian Digby County to produce electricity through tidal turbines. Energetica India. https://www.energetica-india.net/news/canadian-digby-county-to-produce-electricity-through-tidal-turbines
Wang, R., & Patel, M. (2025). Innovative designs and performance analysis of tidal stream generators. IEEE Journal of Oceanic Engineering, 50(1), 45–56.
Winter, A. I. (2011). Differences in fundamental design drivers for wind and tidal turbines. In OCEANS 2011 IEEE-Spain (pp. 1-10). IEEE. https://doi.org/10.1109/Oceans-Spain.2011.6003647
Yamanouchi, Y., Tsuchiya, M., Koga, R., Yamaguchi, K., Izumi, M., & Ida, T. (2024). Conceptual design of a linear power generator for undulator-type tidal current power generation. IEEE Transactions on Applied Superconductivity, 34(3), 1–5. https://doi.org/10.1109/TASC.2024.3370136
Yin, X., & Zhao, X. (2019). ADV preview based nonlinear predictive control for maximizing power generation of a tidal turbine with hydrostatic transmission. IEEE Transactions on Energy Conversion, 34(4), 1781–1791. https://doi.org/10.1109/TEC.2019.2938062
Zhang, L., Cai, X., & Guo, J. (2009). Dynamic response of DFIG fault currents under constant AC excitation condition. In 2009 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE. https://doi.org/10.1109/APPEEC.2009.4918303
Zhou, Z., Scuiller, F., Charpentier, J. F., Benbouzid, M. E. H., & Tang, T. (2013). Power smoothing control in a grid-connected marine current turbine system for compensating swell effect. IEEE Transactions on Sustainable Energy, 4(3), 816–826. https://doi.org/10.1109/TSTE.2013.2251918
Zhou, Z., Scuiller, F., Charpentier, J. F., Benbouzid, M. E. H., & Tang, T. (2014). Power control of a nonpitchable PMSG-based marine current turbine at overrated current speed with flux-weakening strategy. IEEE journal of oceanic engineering, 40(3), 536-545. https://doi.org/10.1109/JOE.2014.2356936