بررسی تغییرات روند ردپای آب در محصولات مختلف بخش های اقتصادی ایران
محورهای موضوعی : مدیریت منابع آبالمیرا تاروردی زاده 1 * , زهرا عابدی 2 , محمدصادق علی پور 3
1 - دانشکده عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
2 - دانشکده کشاورزی، آب، غذا و فراسودمندها، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.
3 - دانشکده آمار اقتصاد، مرکز تحقیقات آمار ایران، تهران، ایران.
کلید واژه: تحلیل داده – ستانده, آب مجازی, ردپای آب, تجارت آب,
چکیده مقاله :
امروزه با محدودیت منابع آب، بررسی اقتصادی بهرهوری آب از اهمیت بالایی برخوردار است. در این بین ردپای آب یکی از مهمترین مسائلی است که میتوان آن را از نظر اقتصادی بررسی نمود. لذا پژوهش حاضر تغییرات ردپای آب در ایران را برای سالهای 1380، 1390 و 1395 با استفاده از مدل اقتصادی داده- ستانده مورد بررسی قرار داده است. این پژوهش، بر اساس مدل داده- ستانده، رویکرد از بالا به پایین به سنجش و بررسی مصرف آب در بخشهای اقتصادی کشور ایران پرداخته است. برای بررسی تکمیلی از شاخصهای مختلفی از جمله فالکن مارک و شاخص سازمان ملل در بررسی ردپای آب استفاده شد. نتایج محاسبات ردپای آب نشان داد که مقدار ردپای کل در سالهای 1380، 1390 و 1395 به ترتیب 2/94311، 6/104689 و 3/120483 میلیون مترمکعب بوده است. در بین بخشهای کشاورزی، صنعت و خدمات، بخش کشاورزی با مقادیر ردپای3/88579، 6/98243 و 4/114457 میلیون مترمکعب برای سالهای 1380، 1390 و 1395 بیشترین ردپای آب را داشته است. مقایسه مقادیر ردپای آب نشان داد که مقدار ردپای وارداتی از ردپای صادراتی بیشتر بوده است. بررسی تجارت آب مجازی کشور نشان داد ایران به دلیل واردات محصولات بیشتر از صادرات، طی سالهای 1380 و1395 واردکننده خالص آب مجازی بوده است. شاخص فالکن مارک برای سالهای 1380، 1390 و 1395 به ترتیب 2678، 1945 و 81/1697 مترمکعب محاسبه شد. در نهایت شاخص سازمان ملل برای سالهای مذکور به ترتیب 8/53، 6/71 و 8/88 درصد محاسبه شد، که نشان از ورود ایران به بحران آبی دارد. در حالت کلی نتایج حاکی از وضعیت نگرانکننده کشور از لحاظ آب و منابع آبی است و نیاز است تا مدیران و مسئولان بخشهای مختلف کشور اهتمام کامل در توجه به این مهم داشته باشند.
With water resources becoming increasingly scarce, it is essential to conduct thorough studies on water efficiency. This study places a strong emphasis on the water footprint, which has emerged as a critical economic concern in recent years. Consequently, the research aims to analyze the evolving changes in Iran's water footprint specifically for the years 1380, 1390, and 1395. To achieve this, the input-output economic model was employed as the primary analytical tool. This model is characterized by a top-down approach, which effectively assesses and evaluates water consumption across the various economic sectors present within Iran.
The analysis incorporated a range of indicators to further explore the concept of virtual water. Among the indicators used were the Falcon Mark and the UN Sharia index, both of which provide valuable insights into water consumption patterns and resource allocation. The calculations that were carried out as part of this study revealed the total water footprints for the years under examination, with figures of 94,311.2 million cubic meters for 1380, 104,689.6 million cubic meters for 1390, and a significant increase to 120,483.3 million cubic meters for 1395. Notably, the agricultural sector emerged as the largest contributor to water footprint, with specific values recorded as 88,579.3 million cubic meters in 1380, followed by 98,243.6 million cubic meters in 1390, and reaching 114,457.4 million cubic meters in 1395.
Further comparisons within the data showed a distinct trend in which the import footprint surpassed that of the export footprint. This finding led to the identification of Iran as a net importer of virtual water during both 1380 and 1395, indicating that the country imported more agricultural and water-intensive products than it was able to export. The analysis also provided insights into the Falcon Mark index, which was recorded at values of 2,678 cubic meters in 1380, 1,945 cubic meters in 1390, and a lower value of 1,697.81 cubic meters in 1395. In tandem, the UN Sharia index reflected concern about water sustainability, with percentages recorded at 53.8% for 1380, increasing to 71.6% for 1390, and culminating in a concerning 88.8% for 1395.
Abdollahzadeh Kahrizi, R., Kokabinezhad Moghaddam, A., & Merufinia, E. (2023). Investigating virtual water and agricultural water productivity index in crops of Poldasht Plain. Water and Soil Management and Modeling, 3(1), 54-68. https://doi.org/ 10.22098/mmws.2022.11090.1100. (In Persian)
Auffhammer, M. (2022). Climate adaptive response estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption. Journal of Environmental Economics and Management, 114, 102669. https://doi.org/10.1016/j.jeem.2022.102669
Bahrami Mahneh, F. (2017). Modeling virtual water trade in Iran's agricultural sector. PhD Thesis. Faculty of Agriculture, University of Zabol.. (In Persian)
Bohlolzadeh. A., Sabzghabaei. G. R., & Dashti. S. (2021). Ecological water footprints and virtual water for wheat and rice products in khuzestan province in order to manage water resources sustainability. Iranian Journal of Irrigation and Drainage 15 (2), 329-341. https://doi.org/20.1001.1.20087942.1400.15.2.9.1 (In Persian)
Cazcarro, I., Duarte, R. & Sanchez Choliz, J. (2013). Multiregional input–output model for the evaluation of Spanish water flows. Environmental Science & Technology, 47 (21), 12275–12283. https://doi.org/10.1021/es4019964
Central Bank of Iran. (2014). Study of international water indicators and the outlook for the global water crisis by 2050. Local report, Tehran, Iran. (In Persian)
Chapagain, A. K. & Hoekstra, A. Y. (2004). Water footprints of nations. Unesco-IHE Institute for Water Education, Delft, The Netherlands.
Chen, Z. M. & Chen, G. (2013). Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade, Ecological Indicators, 28, 142–149. https://doi.org/10.1016/j.ecolind.2012.07.024
Dehghanpir, SH., Bazrafshan, O., Ramezani Etedali, H., Holisaz, A., & Ababaei, B. (2024). Evaluation of water stress index and water poverty in rice production based on the water footprint concept in Iran. Water and Soil Management and Modeling, 4(1), 18-35. https://doi.org/10.22098/MMWS.2023.12116.1206. (In Persian)
Deng, G., Ma, Y. & Li, X. (2016). Regional water footprint evaluation and trend analysis of China-based on interregional input-output model. Journal of Cleaner Production. 112, 4674–4682. https://doi.org/10.1016/j.jclepro.2015.07.129
Dietzenbacher, E. & Velázquez, E. (2007) Analysing Andalusian virtual water trade in an input–output framework, Regional Studies, 41 (2), 185–196.
Dong, H., Geng, Y., Sarkis, J., Fujita, T., Okadera, T. & Xue, B. (2013). Regional water footprint evaluation in China: A case of Liaoning. Science of the Total Environment, 442, 215–224. https://doi.org/10.1016/j.scitotenv.2012.10.049
Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. (2012). Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: A consumption based approach, Applied Geography, 32(2), 691–701. https://doi.org/10.1016/j.apgeog.2011.08.004
Guo, S. & Shen, G. Q. (2015). Multiregional input–output model for China’s farm land and water use. Environmental Science & Technology, 49 (1), 403–414. https://doi.org/10.1021/es503637f
Hoekstra, A. (2007). Human appropriation of natural capital: Comparing ecological footprint and water footprint analysis. Value of Water. Research Report Series No. 23. UNESCOIHE, Delft, The Netherlands.
Hoekstra, A. Y. (2017). Water footprint assessment: Evolvement of a new research field, Water Resources Management, 31 (10), 3061– 3081. https://doi.org/10.1007/s11269-017-1618-5
Hoekstra, A. Y., Chapagain, A. K., Mekonnen, M. M. & Aldaya, M. M. (2011). The water footprint assessment manual: Setting the Global Standard. Earthscan, London, UK.
Hoekstra, A.Y. & Hung, P.Q. (2003). A quantification of virtual water flows between nations in relation to international crop trade، Virtual Water Trade، Processing’s of The International Export Meeting On Virtual Water Trade.
Karbasi, A.R & Rafiei Darani, R. (2014). Impact of changes in economic components of final demand on water use in agriculture: Input-output analysis in Khorasan Razavi Province, Journal of Agricultural Economics and Development , 22 (85), 37-63. https://doi.org/10.30490/AEAD.2014.58843. (In Persian)
Lenzen, M., Moran, D., Bhaduri, A., Kanemoto, K., Bekchanov, M., Geschke, A. & Foran, B. (2013). International trade of scarce water. Ecological Economics, 94, 78–85. https://doi.org/10.1016/j.ecolecon.2013.06.018
Mobaraki, M. & Mobaraki, M. (2021). Investigation of water footprint, virtual water and water use of three groups of autumn and spring products, vegetables (tomatoes and potatoes), industrial (sugar beet) and fodder (fodder corn) in Isfahan. Journal of Water Resources Engineering, 9(1), 89-102. (In Persian)
Najafi, B., Khodadad Kashi, F., Souri, A. & Mousavi Jahromi, Y. (2022). Identification of water footprint in iran’s foreign trade with the approach of the input-output table-2016, New Economy and Trade, Institute for Humanities and Cultural Studies (IHCS) Quarterly Journal, 17(1), 155. https://doi.org/10.30465/JNET.2022.39821.1837. (In Persian)
Nasrollahi, Z., & Zarei, M. (2018). Evaluation of virtual water flows in Iran's economy: Analysing intersectoral water relationships using inpu-output model, Economic Modeling, 2(4), 131-157. https://doi.org/10.22075/JEM.2018.11103.1013
Office of Basic Studies of the Iranian Water ResourcesIran. (2016). (In Persian)
Office of Sustainable Development, Amirkabir University, Iran. (2015). (In Persian)
Oveisi. F., Fattahi Ardakani, A. & Fehresti Sani, M. (2019). Investigation of virtual water and ecological footprints of water in wheat fields of Isfahan province, Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources) 23(1). https://doi.org/20.1001.1.24763594.1398.23.1.28.4. (In Persian)
Piri., H. & Sarani. R., (2020). Investigation of economic productivity of crop products in sistan and Baluchestan Province by water footprint approach, Iranian Journal of Soil and Water Research, https://doi.org/10.22059/IJSWR.2020.289567.668325. (In Persian)
Rastegaripour, F., Salari, A. & Azizzade, F. (2021). Determination of virtual water indices and ecological footprint of sugar beet water in villages of Torbat Heydarieh city, Rural Development Strategies, 8(2), 233-243. https://doi.org/10.22048/rdsj.2021.271470.1916. (In Persian)
Renault, D. (2003). Value of virtual water in food: Principles and virtues. Hoekstra, AY (Ed.).
Tafazzoli, H. (2013). Measurement of sectoral water footprint in Iran using input-output approach. Master's thesis. Allameh Tabataba’i University. (In Persian)
Talebi, A. & Karimi, Z. (2023). Presentation of management responses regarding the strategy of improving the water resources status of Zayandeh Roud Watershed. Integrated Watershed Management, 3(4), 74-91. (In Persian). https://doi.org/10.22034/iwm.2023.2013798.1110
Tian, X., Sarkis, J., Geng, Y., Qian, Y., Gao, C., Bleischwitz, R. & Xu, Y. (2018). Evolution of China’s water footprint and virtual water trade: A global trade assessment, Environment International, 121, 178–188. https://doi.org/10.1016/j.envint.2018.09.011
Wang, Z., Huang, K., Yang, S. & Yu, Y. (2013). An input–output approach to evaluate the water footprint and virtual water trade of Beijing, China, Journal of Cleaner Production, 42, 172–179. https://doi.org/10.1016/j.jclepro.2012.11.007
White, D. J., Hubacek, K., Feng, K., Sun, L. & Meng, B. (2018). The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis, Applied Energy, 210, 550–567. https://doi.org/10.1016/j.apenergy.2017.05.159
Wiedmann, T., Lenzen, M., Turner, K. & Barrett, J. (2007). Examining the global environmental impact of regional consumption activities – Part 2: Review of input–output models for the assessment of environmental impacts embodied in trade, Ecological Economics, 61 (1), 15–26. https://doi.org/10.1016/j.ecolecon.2006.12.003
Yu, Y., Hubacek, K., Feng, K. & Guan, D. (2010). Assessing regional and global water footprints for the UK, Ecological Economics, 69 (5), 1140–1147. https://doi.org/10.1016/j.ecolecon.2009.12.008
Zarei, M. )2016(. Measurement and evaluation of water consumption in economic sectors of Iran and Yazd Province. Yazd University. (In Persian)
Zhang, C. & Anadon, L.D. (2014). A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China, Ecological Economics, 100, 159–172. https://doi.org/10.1016/j.ecolecon.2014.02.006
Zhang, H., Ma, S., Zhang, X. & Wang, Y. (2010). Analysis of Tianjin virtual water trade based on input-output model. In: 2010 International Conference on System Science and Engineering, IEEE, New York, NY, USA. https://doi.org/10.1109/ICSSE.2010.5551796
Zhao, X., Chen, B. &Yang, Z.F. (2009). National water footprint in an input–output framework—a case study of China 2002. Ecology Model, 220, 245–253. https://doi.org/10.1016/j.ecolmodel.2008.09.016