A New Approach of Generalized Interval-Valued Neutrosophic Rough Set and Its Application in Medical Diagnosis
Abhik Mukherjee
1
(
Department of Conservative Dentistry and Endodontics, ITS Dental College, Ghaziabad, India.
)
Anjan Mukherjee
2
(
Department of Mathematics, Tripura University Agartala, Agartala, India.
)
Rakhal Das
3
(
Department of Mathematics, The ICFAI University Tripura, Agartala, India.
)
Ajoy Kanti Das
4
(
Department of Mathematics, Tripura University Agartala, Agartala, India.
)
Keywords: Neutrosophic set, Interval-valued Neutrosophic set, Generalized Neutrosophic set, Generalized interval-valued Neutrosophic set, Generalized interval-valued Neutrosophic rough set.,
Abstract :
This study introduces a framework of Generalized Interval-Valued Neutrosophic Rough Sets (GIVNRSs) to improve the modeling of uncertainty, indeterminacy, and incompleteness in complex data. The framework extends classical rough set theory by incorporating interval-valued neutrosophic elements, providing a richer representation of imprecise information. We establish the fundamental operations of GIVNRSs and explore their theoretical properties in comparison with existing neutrosophic and rough set models. To enhance approximation flexibility, we propose two novel operatorsring sum and ring productwithin the GIVNRS structure. The practical utility of the model is demonstrated through decision-making applications, highlighting its potential to address real-world problems characterized by vagueness and incomplete data.
[1] Smarandache F. Neutrosophy and Neutrosophic logic. In: The First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics, 1-3 Dec 2001, Albuquerque, USA. Albuquerque: University of New Mexico; 2002. DOI: https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1269&context=math fsp
[2] Smarandache F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Rehoboth: American Research Press; 1999.
[3] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
[4] Atanassov KT. Intuitionistic fuzzy sets. In: Sgurev V. (eds.) VII ITKRS Session, Sofia, 20-23 June 1983. central Sci.-Techn. Library of the Bulgarian Academy of Sciences. Sofia, Bulgaria: Bulgarian Academy of Sciences; 1984. DOI: https://www.biomed.bas.bg/bioautomation/2016/vol 20.s1/files/20.s1 02.pdf
[5] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1): 87-96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3
[6] Atanassov KT. Review and new results on intuitionistic fuzzy sets. Mathematical Foundations of Artificial Intelligence Seminar. preprint IM-MFAIS-1-88, Sofia, 1988. Reprinted: International Journal Bioautomation, 2016, 20(S1), S7-S16. DOI: https://www.biomed.bas.bg/bioautomation/2016/vol 20.s1/files/20.s1 03.pdf
[7] Saha A, Broumi S. New operators on interval valued Neutrosophic sets. Neutrosophic Sets and Systems. 2019; 28(1): 128-137. DOI: https://doi.org/10.5281/zenodo.3382525
[8] Broumi S, Smarandache F. Interval-valued Neutrosophic soft rough sets. International Journal of Computational Mathematics. 2015; 2015(1): 232919. DOI: https://doi.org/10.1155/2015/232919
[9] Broumi S, Smarandache F. Interval Neutrosophic rough sets. Neutrosophic Sets and Systems. 2015; 7: 23-31. DOI: https://doi.org/10.5281/zenodo.571414
[10] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences. 1982; 11: 341-356. DOI: https://doi.org/10.1007/BF01001956
[11] Broumi S, Smarandache F, Dhar M. Rough Neutrosophic sets. Italian Journal of Pure and Applied Mathematics. 2014; 32: 493-502. DOI: https://doi.org/10.6084/M9.FIGSHARE.1502608
[12] Yang HL, Bao YL, Guo ZL. Generalized interval Neutrosophic rough sets and its application in multiattribute decision making. Filomat. 2018; 32(1): 11-33. DOI: https://doi.org/10.2298/FIL1801011Y
[13] Mukherjee A, Das R. Generalized interval-valued Neutrosophic set and its application. Transcations of Fuzzy Sets and Systems. 2025; 4(2): 1-13. DOI: https://doi.org/10.71602/tfss.2025.1130042
[14] Salama AA, Alblowi SA. Generalized Neutrosophic set and generalized Neutrosophic topological spaces. Computer Science and Engineering. 2012; 2(7): 129-132. DOI:
https://doi.org/10.5923/j.computer.20120207.01
[15] Mukherjee A, Das R. Neutrosophic bipolar vague soft set and its application to decision making problems. Neutrosophic Sets and Systems. 2020; 32: 409-424. DOI: https://doi.org/10.5281/zenodo.3723198
[16] Chang CL. Fuzzy topological spaces. Journal of Mathematical Analysis and Applications. 1968; 24(1): 182-190. DOI: https://doi.org/10.1016/0022-247X(68)90057-7
[17] Salama AA, Alblowi SA. Neutrosophic set and Netrosophic topological spaces. IOSR Journal of Mathematics (IOSR-JM). 2012; 3(4): 31-35. DOI:
https://doi.org/10.9790/5728-0343135
[18] Dempster AP. Upper and lower probabilities induced by a multivalued mapping. In: The Annals of Mathematical Statistics. 1967; 38(2): 325-339. DOI: https://link.springer.com/chapter/10.1007/978-3-540-44792-4-3