Algebraic Perspectives of Fuzzy Sets: Structures and Properties
Satabdi Ray
1
(
Department of Mathematics, National Institute of Technology, Agartala, Tripura, India.
)
Debnarayan Khatua
2
(
Department of mathematics & Statistics, Vignan’s Foundation for Science, Technology and Research, Guntur, India.
)
Sayantan Mandal
3
(
Department of Basic Science and Humanities, Institute of Engineering and Management (IEM), University of Engineering and Management Kolkata, Kolkata, India.
)
Keywords: Fuzzy set, Algebraic structure, Monoid, Semi-ring, Lattice, Semi-lattice, Near-ring, Anti-ring.,
Abstract :
A structure that is inherent to a specific space and involves actions within that space is highly significant. Various types of structures regarding fuzzy sets have been extensively examined in the literature. Examples of these structures encompass algebraic, topological, and analytical structures. This study examines several algebraic structures present in the domain of fuzzy sets, specifically focusing on the standard union and intersection operations of fuzzy sets. Furthermore, we provide updated depictions for specific subspaces of fuzzy sets and introduce newly defined operations. Consequently, we examine different structures on different subspaces of fuzzy sets in connection to the just-mentioned operations.
[1] Zadeh LA. Fuzzy sets. Information and control. 1965; 8(3): 338-353. DOI: http://doi.org/10.1016/S0019- 9958(65)90241-X
[2] De Luca A, Termini S. Algebraic properties of fuzzy sets. Journal of mathematical analysis and applications. 1972; 40(2): 373-386. DOI: http://doi.org/10.1016/0022-247X(72)90057-1
[3] Mizumoto M, Tanaka K. Fuzzy sets and their operations. Information and Control. 1981; 48(1): 30-48. DOI:
https://doi.org/10.1016/S0019-9958(81)90578-7
[4] Sussner P, Torres RP. Subsethood Measures on a Bounded Lattice of Continuous Fuzzy Numbers with an Application in Approximate Reasoning. In: North American Fuzzy Information Processing Society Annual Conference. Cham: Springer; 2022. p. 267-278. DOI: https://doi.org/10.1007/978-3-031-16038-726
[5] Homenda W. Algebraic operators: an alternative approach to fuzzy sets. International Journal of Applied Mathematics and Computer Science. 1996; 6(3): 505527. https://www.amcs.uz.zgora.pl/? action=paper&paper=1125
[6] Cao N, tpnika M. Preservation of properties of residuated algebraic structure by structures for the partial fuzzy set theory. International Journal of Approximate Reasoning. 2023; 154: 1-26. DOI: https://doi.org/10.1016/j.ijar.2022.12.001
[7] Mizumoto M, Tanaka K. Some properties of fuzzy sets of type 2. Information and control. 1976; 31(4): 312- 340. DOI:
https://doi.org/10.1016/S0019-9958(76)80011-3
[8] Nieminen J. On the algebraic structure of fuzzy sets of type 2. Kybernetika. 1977; 13(4): 261273. https://eudml.org/doc/28219
[9] Eslami E. An algebraic structure for intuitionistic fuzzy logic. Iranian Journal of Fuzzy Systems. 2012; 9(6): 31-41. DOI: https://doi.org/10.22111/ijfs.2012.111
[10] Turunen E. Algebraic structures in fuzzy logic. Fuzzy Sets and Systems. 1992; 52(2): 181-188. DOI: https://doi.org/10.1016/0165-0114(92)90048-9
[11] Chang CL. Fuzzy topological spaces. Journal of Mathematical Analysis and Applications. 1968; 24(1): 182-190. DOI:
https://doi.org/10.1016/0022-247X(68)90057-7
[12] Sarkar M. On fuzzy topological spaces. Journal of mathematical analysis and applications. 1981; 79(2): 384-394. DOI:
https://doi.org/10.1016/0022-247X(81)90033-0
[13] Ganguly S, Sara S. On separation axioms and Ti-fuzzy continuity. Fuzzy sets and systems. 1985; 16(3): 265-275. DOI:
https://doi.org/10.1016/0165-0114(85)90030-2
[14] Sinha SP. Separation axioms in fuzzy topological spaces. Fuzzy sets and systems. 1992; 45(2): 261270. DOI:
https://doi.org/10.1016/0165-0114(92)90127-P
[15] Mukherjee MN, Sinha SP. Almost compact fuzzy sets in fuzzy topological spaces. Fuzzy Sets and Systems. 1990; 38(3): 389-396. DOI: https://doi.org/10.1016/0165-0114(90)90211-N
[16] Lowen R. Connectedness in fuzzy topological spaces. The Rocky Mountain Journal of Mathematics. 1981; 11(3): 427-433. DOI: https://doi.org/10.1216/RMJ-1981-11-3-427
[17] Baczynski M, Drewniak J, Sobera J. Semigroups of fuzzy implications. atra Mountains Mathematical Publications. 2001; 21(1): 61- 71.
[18] Vemuri NR, Jayaram B. Homomorphisms on the Monoid of Fuzzy Implications -A Complete Characterization. International Conference on Pattern Recognition and Machine Intelligence, 2013, 10-14 Dec 2013, Kolkata, India. Berlin: Springer; 2013. p. 563568. DOI: https://doi.org/10.1007/978-3-642-45062- 4 78
[19] Bejines C. Aggregation of fuzzy vector spaces. Kybernetika. 2023; 59(5): 752-767. DOI: https://doi.org/10.14736/kyb-2023-5-0752
[20] Assiry A, Baklouti A. Exploring roughness in left almost semigroups and its Cconnections tofuzzy lie algebras. Symmetry. 2023; 15(9): 1717. DOI: https://doi.org/10.3390/sym15091717
[21] Gupta VK, Jayaram B. Importation Algebras. In: Halas R, Gagolewski M, Mesiar R, editors. New Trends in Aggregation Theory. Cham: Springer International Publishing; 2019. DOI: https://doi.org/10.1007/978-3-030-19494-9 8
[22] Zimmermann H-J. Fuzzy Set Theory and Its Applications. 4th ed. Berlin: Springer Dordrecht; 2011. DOI: https://doi.org/10.1007/978-94-010-0646-0
[23] Baczynski M, Jayaram B, Massanet S, Torrens J. Fuzzy implications: past, present, and future. Berlin: Springer Handbook of Computational Intelligence; 2015. DOI: https://doi.org/10.1007/978-3-662-43505- 2 12
[24] Klement EP, Mesiar R, Pap E. Triangular Norms. vol. 8 of Trends in Logic. Dordrecht: Kluwer Academic Publishers; 2000. DOI: https://doi.org/10.1007/978-94-015-9540-7
[25] Gallian JA. Contemporary Abstract Algebra. 10th ed. New York: Chapman and Hall/CRC; 2021. DOI: https://doi.org/10.1201/9781003142331
[26] Rezaei A, Kim HS, Borzooei RA, Borumand SA. Matrix theory over ringoids. Filomat. 2023; 37(30): 10275-10288. DOI: https://doi.org/10.2298/FIL2330275R
[27] Dolzan D, Oblak P. Idempotent matrices over antirings. Linear Algebra and its Applications. 2009; 431(5-7): 823-832. DOI: https://doi.org/10.1016/j.laa.2009.03.035
[28] Khan WA, Rehman A, Taouti A. Soft near-semi-rings. AIMS Mathematics. 2020; 5(6): 6464-6478. DOI: https://doi.org/10.3934/math.2020417
[29] Pilz G. Near-rings, the Theory and Its Applications. vol. 23 of North-Holland Mathematics Studies. Amsterdam: North-Holland; 1983. https://www.sciencedirect.com/bookseries/north-holland-mathematicsstudies/vol/23/suppl/C