Inventory Problems and The Inventory Problems and The Parametric Measure mλ
Irina Georgescu
1
(
Department of Economic Informatics and Cybernetics, Bucharest University of Economics, Bucharest, Romania.
)
Keywords: Fuzzy variables, Demand vectors, mλ–Measure, mλ–Inventory problem.,
Abstract :
The credibility theory was introduced by B. Liu as a new way to describe the fuzzy uncertainty. The credibility measure is the fundamental notion of the credibility theory. Recently, L.Yang and K. Iwamura extended the credibility measure by defining the parametric measure mλ (λ is a real parameter in the interval [0, 1] and for λ = 1/2 we obtain as a particular case the notion of credibility measure). By using the mλ- measure, we studied in this paper a risk neutral multi-item inventory problem. Our construction generalizes the credibilistic inventory model developed by Y. Li and Y. Liu in 2019. In our model, the components of demand vector are fuzzy variables and the maximization problem is formulated by using the notion of mλ–expected value. We shall prove a general formula for the solution of optimization problem, from which we obtained effective formulas for computing the optimal solutions in the particular cases where the demands are trapezoidal and triangular fuzzy numbers. For λ = 1/2 we obtain as a particular case the computation formulas of the optimal solutions of the credibilistic inventory problem of Li and Liu. These computation formulas are applied for some mλ- models obtained from numerical data.
[1] Kumar RS, Felix A. Fuzzy single period inventory model. In AIP Conference Proceedings; 2019. DOI: 10.1063/1.5097536
[2] Guo Z, Liu Y. Modelling single-period inventory problem by distributionally robust fuzzy optimization method. Journal of Intelligent & Fuzzy Systems. 2018; 35(1): 1007-1019. DOI: 10.3233/JIFS-172128
[3] Chen F, Federgruen A. Mean-variance analysis of basic inventory models. Working Paper. Graduate School of Business, Columbia University; 2000. Available at: https://business.columbia.edu/faculty/research/mean-variance-analysis-stochastic-inventory-models
[4] Choi TM. Handbook of Newsvendor Problems. Springer; 2012.
[5] Luciano E, Pecatti L, Cifarelli DM. VaR as a risk measure for multiperiod static inventory models. International Journal of Production Economics. 2003; 81-82: 375-384. DOI: 10.1016/S0925-5273(02)00369-9
[6] Ahmed S, Cakmak U, Shapiro A. Coherent risk measures in inventory problems. European Journal of Operations Research. 2007; 182(1): 226-238. DOI: 10.1016/j.ejor.2006.07.016
[7] Artzner P, Delbaen F, Eber JM, Heath D. Coherent measures of risk. Mathematical Finance. 1999; 9(3): 203-228: DOI: 10.1111/1467-9965.00068
[8] Borgonovo E, Pecatti L. Financial management in inventory problems: Risk averse vs. risk neutral policies. International Journal of Production Economics. 2009; 118(1): 233-242. DOI: 10.1016/j.ijpe.2008.08.040
[9] Liu B. Uncertainty Theory. Heidelberg: Springer Verlag; 2015.
[10] Liu B, Liu YK. Expected value of fuzzy variable and fuzzy expected models. IEEE Transactions on Fuzzy Systems. 2002; 10(4): 445-450. DOI: 10.1109/TFUZZ.2002.800692
[11] Ghasemy Yaghin R, Fatemi Ghomi SMT, Torabi SA. A hybrid credibility-based fuzzy multiple objective optimisation to differential pricing and inventory policies with arbitrage consideration. International Journal of Systems Science. 2015; 46(14): 2628-2639. DOI: 10.1080/00207721.2013.875239
[12] Guo Z, Sun Y, Tian S, Li Z. A distributionally robust fuzzy optimization method for singleperiod inventory management problems. Scientific Programming. 2023; 2023(1): 1606642. DOI: 10.1155/2023/1606642
[13] Mittal M, Jain V, Pandey JT, Jain M, Dem H. Optimizing inventory management: A comprehensive analysis of models integrating diverse fuzzy demand functions. Mathematics. 2024; 12(1): 70. DOI: 10.3390/math12010070
[14] Li Y, Liu Y. Optimizing fuzzy multi-item single period inventory problem under risk-neutral criterion. J Uncertain Syst. 2016; 10(2): 130-141.
[15] Li Y, Liu Y. A risk-averse multi-item inventory problem with uncertain demand. Journal of Data, Information and Management. 2019; 1: 77-90. DOI: 10.1007/s42488-019-00005-y
[16] Li Y. Modeling multi-item inventory problems under type-2 fuzzy demand. In IFAC-PapersOnLine. 2019. p.147-152. DOI: 0.1016/j.ifacol.2019.11.167
[17] Yang L, Iwamura K. Fuzzy chance-constrained programming with linear combination of possibility measure and necessity measure. Applied Mathematical Sciences. 2008; 2(46): 2271-2288. Available at: https://cir.nii.ac.jp/crid/1050001202793484160?lang=en
[18] Dzouche J, Tassak CD, Sadefo Kamdem J, Fono LA. The first moments and semi - moments of fuzzy variables based on a new measure and application for portofolio selection with fuzzy returns.New Mathematics and Natural Computation. 2020; 16(2): 271-290. DOI: 10.1142/S1793005720500167
[19] Kinnunen J, Georgescu I. Interval-valued credibilistic real options modeling under optimism-pessimism level. In: Saraswat M, Roy S, Chowdhury C, Gandomi A H (eds.) Proceedings of International Conference on Data Science and Applications. Singapore; 2021. p.551-562. DOI:
10.1007/978-981-16-5120-5 42
[20] Kinnunen J, Georgescu I. Credibilistic valuation of merger and acquisition targets with fuzzy real options. In: Ciurea C, Pocatilu P, Filip F G (eds.) Education, Research and Business Technologies. Smart Innovation, Systems and Technologies. Singapore; 2023. p.353-365. DOI: 10.1007/978-981-19-6755-9 28
[21] Georgescu I, Kinnunen J, Collan M. New credibilistic real option model based on the pessimism-optimism character of a decision-maker. In: Sharma N, Chakrabarti A, Balas VE, Bruckstein AM (eds.) Data Management, Analytics and Innovation. Singapore: 2022. p.55-68. DOI: 10.1007/978-981-16-2937-2 5
[22] Georgescu I, Kinnunen J. A credibilistic real options model with an optimism-pessimism measure using trapezoidal fuzzy numbers. In: Kahraman C, Cebi S, Cevik Onar S, Oztaysi B, Tolga A C, Sari IU (eds.) Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Springer, Cham; 2022. p.97-104. DOI: 10.1007/978-3-030-85626-7 12
[23] Vercher E, Bermudez JD, Segura JV. Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems. 2007; 158(7): 769-782. DOI: 10.1016/j.fss.2006.10.026
[24] Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems. 1978; (1)1: 3-28. DOI:
https://doi.org/10.1016/0165-0114(78)90029-5
[25] Dubois D, Prade H. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York; 1988.
[26] Georgescu I. Possibility Theory and the Risk. Springer; 2012.
[27] Georgescu I. Inventory problems with fuzzy numbers as demands. Soft Computing. 2022; 26: 3947-3955. DOI: 10.1007/s00500-022-06758-w
[28] Carlsson C, Full´er R. On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems. 2001; 122(2): 315-326. DOI: 10.1016/S0165-0114(00)00043-9
[29] Choi TM, Li D, Yan H. Mean-variance analysis for the newsvendor problem. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 2008; 38(5): 1169-1180. DOI: 10.1109/TSMCA.2008.2001057