بررسی اثر نانوذرات با خاصیت آنتی اکسیدانی بر رادیکالهای آزاد
محورهای موضوعی :
نانوبیوتکنولوژی
فاطمه مرادی
1
,
نادیا محمودی خطیر
2
*
1 - کارشناسی، گروه بیوتکنولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)، تهران، ایران.
2 - استادیار، گروه بیوتکنولوژی، دانشکده علوم زیستی، دانشگاه الزهرا(س)، تهران، ایران
تاریخ دریافت : 1401/03/21
تاریخ پذیرش : 1401/07/09
تاریخ انتشار : 1401/07/01
کلید واژه:
رادیکال آزاد,
آنتی اکسیدان,
نانوذرات,
چکیده مقاله :
هدف: هدف پژوهش حاضر بررسی اثر نانوذرات با خاصیت آنتی اکسیدانی بر رادیکالهای آزاد است.مواد و روشها: در راستای تحقق هدف پژوهش، محتوا و نتایج مقالات معتبر پژوهشی مرتبط با موضوع پژوهش حاضر، مورد تحلیل و بررسی قرار گرفته است.یافتهها: بررسی و تحلیل نتایج پژوهشهایی که به اثر نانوذرات با خاصیت آنتی اکسیدانی بر رادیکالهای آزاد پرداختهاند، نشان داد که نانوذرات به دلیل کاربردهای فراوان و خواص منحصر به فردشان اخیراً بسیار مورد توجه قرار گرفتهاند. استرس اکسیداتیو، عامل بسیاری از بیماریها در انسان است. استرس اکسیداتیو پدیدهای است که در آن تعادل بین دفاع آنتی اکسیدانی و اکسیدانها در سلول مختل میشود. آنتی اکسیدانها از آسیب ناشی از اکسیدانها جلوگیری میکنند. اگرچه آنتیاکسیدانها از دیرباز شناخته شدهاند، اما تحقیقات در مورد آنتیاکسیدانهای طبیعی یا مصنوعی بهبودیافته، به دلیل کاربردهای عملی مهم آنها هنوز یک موضوع مورد توجه است. آنتی اکسیدانها ممکن است از پایداری پایین تحت اکسیژن رنج ببرند و در سیستمهای بیولوژیکی میتوانند قبل از رسیدن به سایتهای هدف تخریب شوند؛ یا میتوانند اثرات نامطلوبی بر سلامتی داشته باشند که استفاده از آنها را محدود میکند. گاهی اوقات، حذف آنتی اکسیدانها از سیستم همگنی که به آن افزوده شدهاند، پس از تأثیر آنها مطلوب است. در این زمینه، فناوری نانو فرصتهای جدیدی را برای بهرهبرداری از خواص بینظیر و خلاقانه نانومواد، احتمالاً در ترکیب با برخی از ترکیبات طبیعی یا مصنوعی معمولی، با هدف دستیابی به نانو آنتیاکسیدانهای پیشگام با خواص افزایشیافته، باز کرده است. برخی از نانوموادها، از جمله اکسیدهای فلزی آلی (مثلاً ملانین، لیگنین) (یعنی اکسید سریم) یا نانوذرات فلزی (به عنوان مثال طلا)، فعالیت اکسیداسیون و کاهش ذاتی از خود نشان می دهند که اغلب با به دام انداختن رادیکالها و/ یا با سوپراکسید دیسموتاز مانند و کاتالاز مرتبط است.نتیجهگیری: نانوذرات معدنی با موفقیت از نظر خواص آنتی اکسیدانی مورد ارزیابی قرار گرفته اند. اخیراً نانو آنتی اکسیدانها توانایی کاهش استرس اکسیداتیو با حساسیت بیشتر، فعالیت آنتی اکسیدانی سلولی و کمترین اثرات سیتوتوکسیک و تحویل هدفمند را نشان دادهاند.
چکیده انگلیسی:
Objectives: The purpose of this study is to investigate the effect of nanoparticles with antioxidant properties on free radicals.Materials and methods: In order to achieve the goal of the research, the content and results of valid research articles related to the subject of the current research have been analyzed and reviewed.Findings: Examining and analyzing the results of studies that have dealt with the effect of nanoparticles with antioxidant properties on free radicals, showed that nanoparticles have recently received much attention due to their many applications and unique properties. Oxidative stress is the cause of many diseases in humans. Oxidative stress is a phenomenon in which the balance between antioxidant defense and oxidants in the cell is disrupted. Antioxidants prevent damage caused by oxidants. Although antioxidants have been known for a long time, research on improved natural or synthetic antioxidants is still a topic of interest due to their important practical applications. Antioxidants may suffer from low stability under oxygen and in biological systems can be degraded before reaching their target sites; Or they can have adverse health effects that limit their use. Sometimes, it is desirable to remove the antioxidants from the homogenous system to which they have been added, after they have taken effect. In this context, nanotechnology has opened new opportunities to exploit the unique and innovative properties of nanomaterials, possibly in combination with some common natural or synthetic compounds, with the aim of achieving pioneering "nano-antioxidants" with enhanced properties. Some nanomaterials, including organic metal oxides (e.g., melanin, lignin) (i.e., cerium oxide) or metal nanoparticles (e.g., gold), exhibit intrinsic redox activity, often by scavenging radicals and/or It is associated with superoxide dismutase-like and catalase.Conclusions: Inorganic nanoparticles have been successfully evaluated in terms of antioxidant properties. Recently, nano antioxidants have shown the ability to reduce oxidative stress with greater sensitivity, cellular antioxidant activity and minimal cytotoxic effects and targeted delivery.
منابع و مأخذ:
Yildirimer L, Thanh NTK, Loizidou M & Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011; 6(6): 585-607.
Joy Prabu H & Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science. 2015; 1(4): 237-46.
Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW & Mahdi MA. Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine. 2011; 6: 71-5.
Abid JP, Wark AW, Brevet PF & Girault HH. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (Camb). 2002; 7: 792-3.
Kaliamurthi S, Selvaraj G, Çakmak ZE & Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). 2016; 55(5): 568-76.
El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM & Yang ST. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol. 2016; 56(5): 531-40.
Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M & Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol. 2016; 44(1): 235-9.
Sabbagh F, Kiarostami K, Mahmoudi Khatir N, Rezania S & Muhamad II. Green synthesis of MgO. 99 ZnO. 010 nanoparticles for the fabrication of κ-Carrageenan/ NaCMC hydrogel in order to deliver catechin. 2020; 12(4): 861.
Ghosh Chaudhuri R & Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012; 112(4): 2373-433.
K S, S G, T R & T B. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of Nanobiotechnology. 2011; 9(1): 43.
Hoag G, Collins J, Holcomb J, Hoag J, Nadagouda M & Varma R. Degradation of bromothymol blue by greener nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry. 2009; 19: 8671–7.
Kaliamurthi S, Selvaraj G & Ramanathan T. Influence of Leaf Broth Concentration of Excoecaria Agallocha as a Process Variable in Silver Nanoparticles Synthesis. J Nanomed Res. 2014; 1: 1-5.
Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M & et al. Green Chemistry of Zein Protein Toward the Synthesis of Bioconjugated Nanoparticles: Understanding Unfolding, Fusogenic Behavior, and Hemolysis. ACS Sustainable Chemistry & Engineering. 2013; 1(6): 627-39.
Azeez L, Lateef A & Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience. 2017; 7(1-2): 59-66.
Li Z, Jiang H, Xu C & Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 2015; 43: 153-64.
Apak Ra, Özyürek M, Güçlü K & Çapanoğlu E. Antioxidant activity/capacity measurement. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of agricultural and food chemistry. 2016; 64(5): 997-1027.
Hayyan M, Hashim MA & AlNashef IM. Superoxide ion: generation and chemical implications. Chemical reviews. 2016; 116(5): 3029-85.
Ďuračková Z. Some current insights into oxidative stress. Physiological research. 2010; 59(4).
Su J & Groves JT. Mechanisms of peroxynitrite interactions with heme proteins. Inorganic chemistry. 2010; 49(14): 6317-29.
Fridovich I. The biology of oxygen radicals. 1978; 201(4359): 875-80.
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflügers Archiv-European Journal of Physiology. 2010; 459(6): 923-39.
Voetsch B, Jin RC & Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochemistry and cell biology. 2004; 122(4): 353-67.
Kaysen GA & Eiserich JP. The role of oxidative stress–altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. Journal of the American Society of Nephrology. 2004; 15(3): 538-48.
Del Rio D, Stewart AJ & Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases. 2005; 15(4): 316-28.
Viner RI, Hühmer AF, Bigelow DJ & Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca-+2ATPase by peroxynitrite. Free radical research. 1996; 24(4): 243-59.
Cooke MS, Evans MD, Dizdaroglu M & Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal. 2003; 17(10): 1195-214.
Phaniendra A, Jestadi DB & Periyasamy Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry. 2015; 30(1): 11-26.
Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer's disease. 2008; 13(2): 199-223.
Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxidants & redox signaling. 2008; 10(11): 1923-40.
Katta R & Brown DN. Diet and skin cancer: The potential role of dietary antioxidants in nonmelanoma skin cancer prevention. Journal of skin cancer. 2015 (2015).
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S & et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research. 2018; 9: 1-16.
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY & et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology letters. 2011; 201(1): 92-100.
Babior BM. Phagocytes and oxidative stress. The American journal of medicine. 2000; 109(1): 33-44.
Halliwell B & Gutteridge JM. Free radicals in biology and medicine. Oxford University Press, USA, 2015.
Cillard J, Cillard P & Cormier M. Effect of experimental factors on the prooxidant behavior of α-tocopherol. Journal of the American Oil Chemists’ Society. 1980; 57(8): 255-261.
Valgimigli L & Pratt DA. Antioxidants in Chemistry and Biology. Encyclopedia of Radicals in Chemistry, Biology and Materials, 2012.
Lvov Y, Wang W, Zhang L & Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional Advanced Materials. 2016; 28(6): 1227-1250.
Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I & Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Physical Chemistry Chemical Physics. 2012; 14(32): 11318-26.
Baschieri A & Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH. A Review Antioxidants. 2021; 10(10): 1551.
Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P & et al. Electron localization determines defect formation on ceria substrates. 2005; 309(5735): 752-5.
Valgimigli L, Baschieri A & Amorati R. Antioxidant activity of nanomaterials. Journal of Materials Chemistry. 2018; 6(14): 2036-51.
Duan H, Wang D & Li Y. Green chemistry for nanoparticle synthesis. Chemical Society Reviews. 2015; 44(16): 5778-92.
Gong W, Xiang Z, Ye F & Zhao G. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products. 2016; 91: 340-9.
Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM & Montaño-Leyva B. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. 2016; 11(2): 5452-81.
Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA & Santos HA. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science. 2018; 93: 233-69.
Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D & et al. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel). 2021; 10(2).
Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L & et al. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. J Am Chem Soc. 2017; 139(2): 856-62.
Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L & et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. 2018; 10(15): 6981-91.
Liang Y, Zhao X, Hu T, Han Y & Guo B. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci. 2019; 556: 514-28.
Guo Y, Baschieri A, Mollica F, Valgimigli L, Cedrowski J, Litwinienko G & et al. Hydrogen Atom Transfer from HOO. to ortho-Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie International Edition. 2021; 60(28): 15220-4.
Mavridi-Printezi A, Guernelli M, Menichetti A & Montalti M. Bio-Applications
of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. 2020; 10(11).
Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A & et al. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano. 2018; 12(5): 4761-74.
Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y & et al. Artificial Allomelanin Nanoparticles. ACS Nano. 2019; 13(10): 10980-90.
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C & et al. Ultra-Fast Synthesis of Multivalent Radical Nanoparticles by Ring-Opening Metathesis Polymerization-Induced Self-Assembly. Angewandte Chemie International Edition. 2019; 58(14): 4725-31.
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L & et al. Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Interfaces. 2021; 13(27): 31996-2004.
Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC & et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007; 42(11): 1632-50.
Luo M, Boudier A, Clarot I, Maincent P, Schneider R & Leroy P. Gold Nanoparticles Grafted by Reduced Glutathione With Thiol Function Preservation. Colloid and Interface Science Communications. 2016; 14: 8-12.
Saravani R, Sargazi S, Saravani R, Rabbani M, Rahdar A & Taboada P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. Journal of Drug Delivery Science and Technology. 2020; 60: 101987.
Deligiannakis Y, Sotiriou GA & Pratsinis SE. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces. 2012; 4(12): 6609-17.
Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S & et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces. 2016; 140: 505-13.
Arriagada F, Günther G & Morales J. Nanoantioxidant–based silica particles as flavonoid carrier for drug delivery applications. 2020; 12(4): 302.
Arriagada F, Günther G, Nos J, Nonell S, Olea-Azar C & Morales J. Antioxidant Nanomaterial Based on Core⁻Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. Nanomaterials (Basel). 2019; 9(2).
Massaro M, Riela S, Guernelli S, Parisi F, Lazzara G, Baschieri A & et al. A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry. 2016; 4(13): 2229-41.
Shah ST, A Yehya W, Saad O, Simarani K, Chowdhury Z, Alhadi A & et al. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. 2017; 7(10): 306.
Shah ST, Yehye WA, Chowdhury ZZ & Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. Peer J. 2019; 7: e7651.
Viglianisi C, Di Pilla V, Menichetti S, Rotello VM, Candiani G, Malloggi C & et al. Linking an α-tocopherol derivative to cobalt (0) nanomagnets: magnetically responsive antioxidants with superior radical trapping activity and reduced cytotoxicity. 2014; 20(23): 6857-60.
Bedlovičová Z, Strapáč I, Baláž M & Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. 2020; 25(14): 3191.
Cao G & Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clinical chemistry. 1998; 44(6): 1309-15.
Burke KE. Mechanisms of aging and development- A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mechanisms of ageing and development. 2018; 172: 123-30.
Burke K. Photodamage of the skin: protection and reversal with topical antioxidants. Journal of Cosmetic Dermatology. 2004; 3(3): 149-55.
Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S & et al. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids and Surfaces B: Biointerfaces. 2020; 189: 110855.
Ansari MA, Roberts KN & Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biology and Medicine. 2008; 45(4): 443-52.
Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F & Carrillo-Vico A. Oxidative stress in traumatic brain injury. Current medicinal chemistry. 2014; 21(10): 1201-11.
Goshisht MK, Moudgil L, Rani M, Khullar P, Singh G, Kumar H & et al. Lysozyme Complexes for the Synthesis of Functionalized Biomaterials To Understand Protein–Protein Interactions and Their Biological Applications. The Journal of Physical Chemistry C. 2014; 118(48): 28207-19.
Hu G, Lyeth BG, Zhao X, Mitchell JB & Watson JC. Neuroprotection by the stable nitroxide 3-carbamoyl-proxyl during reperfusion in a rat model of transient focal ischemia. Journal of neurosurgery. 2003; 98(2): 393-6.
Cuzzocrea S, McDonald M, Mazzon E, Siriwardena D, Costantino G, Fulia F & et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain research. 2000; 875(1-2): 96-106.
Rzigalinski BA, Meehan K, Whiting MD, Dillon CE, Hockey K & Brewer M. Antioxidant nanoparticles. New York: CRC Press, 2011: 100-22.
Ciofani G, Genchi GG, Liakos I, Cappello V, Gemmi M, Athanassiou A & et al. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharmaceutical research. 2013; 30(8).
Tsai Y-Y, Oca-Cossio J, Agering K, Simpson NE, Atkinson MA, Wasserfall CH & et al. Wasserfall, Ioannis Constantinidis, and Wolfgang Sigmund. Novel synthesis of cerium oxide nanoparticles for free radical scavenging, 2007: 325-332.
Schubert D, Dargusch R, Raitano J & Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and biophysical research communications. 2006; 342(1): 86-91.
Das M, Patil S, Bhargava N, Kang J-F, Riedel LM, Seal S & et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. 2007; 28(10): 1918-25.
Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja V & et al. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma. 2020; 37(12): 1452-62.
Aneggi E, Boaro M, de Leitenburg C, Dolcetti G & Trovarelli A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. Journal of Alloys and Compounds. 2006; 408: 1096-102.
Singh N, Cohen CA & Rzigalinski BA. Treatment of neurodegenerative disorders with radical nanomedicine. Annals of the New York Academy of Sciences. 2007; 1122(1): 219-30.
Collins JA, Diekman BO & Loeser RF. Targeting aging for disease modification in osteoarthritis. Current opinion in rheumatology. 2018; 30(1).
Lepetsos P & Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016; 1862(4): 576-91.
Poulet B & Beier F. Targeting oxidative stress to reduce osteoarthritis. Springer, 2016: 1-2.
_||_
Yildirimer L, Thanh NTK, Loizidou M & Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011; 6(6): 585-607.
Joy Prabu H & Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala International Journal of Modern Science. 2015; 1(4): 237-46.
Zamiri R, Azmi BZ, Sadrolhosseini AR, Ahangar HA, Zaidan AW & Mahdi MA. Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int J Nanomedicine. 2011; 6: 71-5.
Abid JP, Wark AW, Brevet PF & Girault HH. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun (Camb). 2002; 7: 792-3.
Kaliamurthi S, Selvaraj G, Çakmak ZE & Çakmak T. Production and characterization of spherical thermostable silver nanoparticles from Spirulina platensis (Cyanophyceae). 2016; 55(5): 568-76.
El-Baz AF, El-Batal AI, Abomosalam FM, Tayel AA, Shetaia YM & Yang ST. Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J Basic Microbiol. 2016; 56(5): 531-40.
Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M & Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol. 2016; 44(1): 235-9.
Sabbagh F, Kiarostami K, Mahmoudi Khatir N, Rezania S & Muhamad II. Green synthesis of MgO. 99 ZnO. 010 nanoparticles for the fabrication of κ-Carrageenan/ NaCMC hydrogel in order to deliver catechin. 2020; 12(4): 861.
Ghosh Chaudhuri R & Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012; 112(4): 2373-433.
K S, S G, T R & T B. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of Nanobiotechnology. 2011; 9(1): 43.
Hoag G, Collins J, Holcomb J, Hoag J, Nadagouda M & Varma R. Degradation of bromothymol blue by greener nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry. 2009; 19: 8671–7.
Kaliamurthi S, Selvaraj G & Ramanathan T. Influence of Leaf Broth Concentration of Excoecaria Agallocha as a Process Variable in Silver Nanoparticles Synthesis. J Nanomed Res. 2014; 1: 1-5.
Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M & et al. Green Chemistry of Zein Protein Toward the Synthesis of Bioconjugated Nanoparticles: Understanding Unfolding, Fusogenic Behavior, and Hemolysis. ACS Sustainable Chemistry & Engineering. 2013; 1(6): 627-39.
Azeez L, Lateef A & Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. Applied Nanoscience. 2017; 7(1-2): 59-66.
Li Z, Jiang H, Xu C & Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 2015; 43: 153-64.
Apak Ra, Özyürek M, Güçlü K & Çapanoğlu E. Antioxidant activity/capacity measurement. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of agricultural and food chemistry. 2016; 64(5): 997-1027.
Hayyan M, Hashim MA & AlNashef IM. Superoxide ion: generation and chemical implications. Chemical reviews. 2016; 116(5): 3029-85.
Ďuračková Z. Some current insights into oxidative stress. Physiological research. 2010; 59(4).
Su J & Groves JT. Mechanisms of peroxynitrite interactions with heme proteins. Inorganic chemistry. 2010; 49(14): 6317-29.
Fridovich I. The biology of oxygen radicals. 1978; 201(4359): 875-80.
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflügers Archiv-European Journal of Physiology. 2010; 459(6): 923-39.
Voetsch B, Jin RC & Loscalzo J. Nitric oxide insufficiency and atherothrombosis. Histochemistry and cell biology. 2004; 122(4): 353-67.
Kaysen GA & Eiserich JP. The role of oxidative stress–altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. Journal of the American Society of Nephrology. 2004; 15(3): 538-48.
Del Rio D, Stewart AJ & Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases. 2005; 15(4): 316-28.
Viner RI, Hühmer AF, Bigelow DJ & Schöneich C. The oxidative inactivation of sarcoplasmic reticulum Ca-+2ATPase by peroxynitrite. Free radical research. 1996; 24(4): 243-59.
Cooke MS, Evans MD, Dizdaroglu M & Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. The FASEB Journal. 2003; 17(10): 1195-214.
Phaniendra A, Jestadi DB & Periyasamy Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry. 2015; 30(1): 11-26.
Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents. Journal of Alzheimer's disease. 2008; 13(2): 199-223.
Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxidants & redox signaling. 2008; 10(11): 1923-40.
Katta R & Brown DN. Diet and skin cancer: The potential role of dietary antioxidants in nonmelanoma skin cancer prevention. Journal of skin cancer. 2015 (2015).
Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S & et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research. 2018; 9: 1-16.
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY & et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology letters. 2011; 201(1): 92-100.
Babior BM. Phagocytes and oxidative stress. The American journal of medicine. 2000; 109(1): 33-44.
Halliwell B & Gutteridge JM. Free radicals in biology and medicine. Oxford University Press, USA, 2015.
Cillard J, Cillard P & Cormier M. Effect of experimental factors on the prooxidant behavior of α-tocopherol. Journal of the American Oil Chemists’ Society. 1980; 57(8): 255-261.
Valgimigli L & Pratt DA. Antioxidants in Chemistry and Biology. Encyclopedia of Radicals in Chemistry, Biology and Materials, 2012.
Lvov Y, Wang W, Zhang L & Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional Advanced Materials. 2016; 28(6): 1227-1250.
Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I & Berlier G. Mesoporous silica as a carrier for topical application: the Trolox case study. Physical Chemistry Chemical Physics. 2012; 14(32): 11318-26.
Baschieri A & Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH. A Review Antioxidants. 2021; 10(10): 1551.
Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P & et al. Electron localization determines defect formation on ceria substrates. 2005; 309(5735): 752-5.
Valgimigli L, Baschieri A & Amorati R. Antioxidant activity of nanomaterials. Journal of Materials Chemistry. 2018; 6(14): 2036-51.
Duan H, Wang D & Li Y. Green chemistry for nanoparticle synthesis. Chemical Society Reviews. 2015; 44(16): 5778-92.
Gong W, Xiang Z, Ye F & Zhao G. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus Latiforus). Industrial Crops and Products. 2016; 91: 340-9.
Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM & Montaño-Leyva B. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. 2016; 11(2): 5452-81.
Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA & Santos HA. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science. 2018; 93: 233-69.
Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D & et al. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel). 2021; 10(2).
Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L & et al. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application To Protect Brain from Injury in Ischemic Stroke. J Am Chem Soc. 2017; 139(2): 856-62.
Zhao H, Zeng Z, Liu L, Chen J, Zhou H, Huang L & et al. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. 2018; 10(15): 6981-91.
Liang Y, Zhao X, Hu T, Han Y & Guo B. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci. 2019; 556: 514-28.
Guo Y, Baschieri A, Mollica F, Valgimigli L, Cedrowski J, Litwinienko G & et al. Hydrogen Atom Transfer from HOO. to ortho-Quinones Explains the Antioxidant Activity of Polydopamine. Angewandte Chemie International Edition. 2021; 60(28): 15220-4.
Mavridi-Printezi A, Guernelli M, Menichetti A & Montalti M. Bio-Applications
of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. 2020; 10(11).
Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A & et al. Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano. 2018; 12(5): 4761-74.
Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y & et al. Artificial Allomelanin Nanoparticles. ACS Nano. 2019; 13(10): 10980-90.
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C & et al. Ultra-Fast Synthesis of Multivalent Radical Nanoparticles by Ring-Opening Metathesis Polymerization-Induced Self-Assembly. Angewandte Chemie International Edition. 2019; 58(14): 4725-31.
Genovese D, Baschieri A, Vona D, Baboi RE, Mollica F, Prodi L & et al. Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Interfaces. 2021; 13(27): 31996-2004.
Soule BP, Hyodo F, Matsumoto K, Simone NL, Cook JA, Krishna MC & et al. The chemistry and biology of nitroxide compounds. Free Radic Biol Med. 2007; 42(11): 1632-50.
Luo M, Boudier A, Clarot I, Maincent P, Schneider R & Leroy P. Gold Nanoparticles Grafted by Reduced Glutathione With Thiol Function Preservation. Colloid and Interface Science Communications. 2016; 14: 8-12.
Saravani R, Sargazi S, Saravani R, Rabbani M, Rahdar A & Taboada P. Newly crocin-coated magnetite nanoparticles induce apoptosis and decrease VEGF expression in breast carcinoma cells. Journal of Drug Delivery Science and Technology. 2020; 60: 101987.
Deligiannakis Y, Sotiriou GA & Pratsinis SE. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces. 2012; 4(12): 6609-17.
Massaro M, Amorati R, Cavallaro G, Guernelli S, Lazzara G, Milioto S & et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces. 2016; 140: 505-13.
Arriagada F, Günther G & Morales J. Nanoantioxidant–based silica particles as flavonoid carrier for drug delivery applications. 2020; 12(4): 302.
Arriagada F, Günther G, Nos J, Nonell S, Olea-Azar C & Morales J. Antioxidant Nanomaterial Based on Core⁻Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. Nanomaterials (Basel). 2019; 9(2).
Massaro M, Riela S, Guernelli S, Parisi F, Lazzara G, Baschieri A & et al. A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin. Journal of Materials Chemistry. 2016; 4(13): 2229-41.
Shah ST, A Yehya W, Saad O, Simarani K, Chowdhury Z, Alhadi A & et al. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. 2017; 7(10): 306.
Shah ST, Yehye WA, Chowdhury ZZ & Simarani K. Magnetically directed antioxidant and antimicrobial agent: synthesis and surface functionalization of magnetite with quercetin. Peer J. 2019; 7: e7651.
Viglianisi C, Di Pilla V, Menichetti S, Rotello VM, Candiani G, Malloggi C & et al. Linking an α-tocopherol derivative to cobalt (0) nanomagnets: magnetically responsive antioxidants with superior radical trapping activity and reduced cytotoxicity. 2014; 20(23): 6857-60.
Bedlovičová Z, Strapáč I, Baláž M & Salayová A. A brief overview on antioxidant activity determination of silver nanoparticles. 2020; 25(14): 3191.
Cao G & Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clinical chemistry. 1998; 44(6): 1309-15.
Burke KE. Mechanisms of aging and development- A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mechanisms of ageing and development. 2018; 172: 123-30.
Burke K. Photodamage of the skin: protection and reversal with topical antioxidants. Journal of Cosmetic Dermatology. 2004; 3(3): 149-55.
Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S & et al. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids and Surfaces B: Biointerfaces. 2020; 189: 110855.
Ansari MA, Roberts KN & Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biology and Medicine. 2008; 45(4): 443-52.
Rodriguez-Rodriguez A, Jose Egea-Guerrero J, Murillo-Cabezas F & Carrillo-Vico A. Oxidative stress in traumatic brain injury. Current medicinal chemistry. 2014; 21(10): 1201-11.
Goshisht MK, Moudgil L, Rani M, Khullar P, Singh G, Kumar H & et al. Lysozyme Complexes for the Synthesis of Functionalized Biomaterials To Understand Protein–Protein Interactions and Their Biological Applications. The Journal of Physical Chemistry C. 2014; 118(48): 28207-19.
Hu G, Lyeth BG, Zhao X, Mitchell JB & Watson JC. Neuroprotection by the stable nitroxide 3-carbamoyl-proxyl during reperfusion in a rat model of transient focal ischemia. Journal of neurosurgery. 2003; 98(2): 393-6.
Cuzzocrea S, McDonald M, Mazzon E, Siriwardena D, Costantino G, Fulia F & et al. Effects of tempol, a membrane-permeable radical scavenger, in a gerbil model of brain injury. Brain research. 2000; 875(1-2): 96-106.
Rzigalinski BA, Meehan K, Whiting MD, Dillon CE, Hockey K & Brewer M. Antioxidant nanoparticles. New York: CRC Press, 2011: 100-22.
Ciofani G, Genchi GG, Liakos I, Cappello V, Gemmi M, Athanassiou A & et al. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharmaceutical research. 2013; 30(8).
Tsai Y-Y, Oca-Cossio J, Agering K, Simpson NE, Atkinson MA, Wasserfall CH & et al. Wasserfall, Ioannis Constantinidis, and Wolfgang Sigmund. Novel synthesis of cerium oxide nanoparticles for free radical scavenging, 2007: 325-332.
Schubert D, Dargusch R, Raitano J & Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and biophysical research communications. 2006; 342(1): 86-91.
Das M, Patil S, Bhargava N, Kang J-F, Riedel LM, Seal S & et al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. 2007; 28(10): 1918-25.
Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja V & et al. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma. 2020; 37(12): 1452-62.
Aneggi E, Boaro M, de Leitenburg C, Dolcetti G & Trovarelli A. Insights into the redox properties of ceria-based oxides and their implications in catalysis. Journal of Alloys and Compounds. 2006; 408: 1096-102.
Singh N, Cohen CA & Rzigalinski BA. Treatment of neurodegenerative disorders with radical nanomedicine. Annals of the New York Academy of Sciences. 2007; 1122(1): 219-30.
Collins JA, Diekman BO & Loeser RF. Targeting aging for disease modification in osteoarthritis. Current opinion in rheumatology. 2018; 30(1).
Lepetsos P & Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2016; 1862(4): 576-91.
Poulet B & Beier F. Targeting oxidative stress to reduce osteoarthritis. Springer, 2016: 1-2.