طراحی و ساخت دستگاه خودکار پرکن ویال- انتقال رادیو دارو جهت هات لب مرکز تصویربرداری
محورهای موضوعی : بیوفیزیک
1 - کارشناس ارشد، مهندسی پرتوپزشکی، دانشگاه آزاد اسلامی، واحد قم، قم، ایران.
2 - دانشیار، گروه فیزیک و پرتوپزشکی، دانشگاه آزاد اسلامی، واحد قم، قم، ایران.
کلید واژه: تصویربرداری پزشکی, هاتلب, رادیودارو, طراحی برای تولید و مونتاژ, خودکارسازی,
چکیده مقاله :
هدف: از طراحی و ساخت این دستگاه، طراحی یک سیستم اتوماسیون جهت تهیه و انتقال رادیوداروها، افزایش ایمنی و حفاظت کارکنان از مواد پرتوزا، افزایش دقت کار، استفاده حداکثری از قطعات استاندارد، کاهش تعداد قطعات و اصول طراحی برای تولید و مونتاژ مجموعه است. موادوروشها: برای گردآوری اطلاعات از روش کتابخانهای و انجام آزمایشات فنی استفاده شده است. طرح ارائه شده نظری-عملی میباشد و با توجه به سیستمهای موجود ژنراتورهای رادیو دارو ارائه شده است. این طرح ابتدا به صورت نظری و نقشههای فنی ارزیابی شده و سپس بخشهای مکانیزه آن طراحی و نمونه اولیه آن ساخته شد. یافتهها: با توجه به اینکه پرتوگیریهای کم مقدار در بازههای طولانی و آثار احتمالی ناشی از پرتوگیری به خصوص سرطان رابطه مستقیمی دارد و همچنین روند کنونی استفاده از رادیوداروها در مراکز پزشکی سبب افزایش خطرات ناشی از پرتوگیری میشود، یافتهها نشان میدهد استفاده از این سیستم در مراکز تصویربرداری تا حد چشمگیری خطرات مذکور را کاهش خواهد داد. نتیجهگیری: طراحی و ساخت نمونه اولیه دستگاه هوشمند تهیه و انتقال رادیوداروها در بخش هات لبمراکز تصویربرداری پزشکی در کنار ژنراتور Tc-Mo به منظور مکانیزهسازی فرآیند قرارگیری ویالها روی ژنراتور و سپس برداشت ویالهای حاوی Tc99m و جابجایی آنها با حذف کاربر در نزدیکی ژنراتور هنگام دوشش، به میزان قابل توجهی از پرتوگیری ناخواسته جلوگیری خواهد کرد.
Introduction:The purposes of design and Manufacturing of this device are providing an automation prototype system for radiopharmaceuticals preparing and transferring, increasing the safety and staff radiation protection, increasing the work accuracy, using the most standard parts, reducing the number of parts and providing the design principles of production and assembly. Material and methods: Library research method and technical experiments were used to collect information. The proposed design is a theoretical-practical plan, and according to the existing systems of radiopharmaceutical generators is presented, this design was evaluated theoretically by providing the technical drawings at the first, then its mechanical sections were designed and the prototype was made. Results: According to direct relationship between low-dose radiation over long periods and the possible effects of radiation, especially cancer, and also the current trend of using radiopharmaceuticals in medical centers may increase the risks of radiation, the findings show that the use of this system in imaging centers will significantly reduce these risks. Conclusion: The design and construction of an intelligent device prototype was conducted for preparing and transferring radiopharmaceuticals in the hot lab section of medical imaging centers next to the Tc-Mo generator in order to mechanize the process of placing the vials on the generator and then removing the vials containing Tc99m and moving them. This system will significantly prevent unwanted radiation when milking.
ILO, International Labor Office (ILO), Radiation Protection of Workers (ionizing radiation) and ILO code of practice (Geneva: ILO) (1987).
Berger G, et al. Automated synthesis of carbon-abeled radiopharmaceuticals: imipramine, chlorpromazine, nicotin and methionine. Internation Journal of Applied Radiation and Isotopes. 1979; 30 :393-399.
Schelbert H, et al. Emission tomography of the heart. Seminars irz Nzzclear Medicine. 1980; 10: 355-373.
Nazififard M. A novel device for automatic withdrawal and accurate calibration of 99m-Technetium radiopharmaceuticals to minimize radiation exposure to nuclear medicine staff and patient. Radiation Protection Dosimetry.
Nazififard M. Automatic Dispensing and Calibration of Diagnostic Radiopharmaceuticals. Radiation Protection Dosimetry. 2013; 154(4): 510-516.
Robotic Dispenser for Radiopharmaceuticals. Retrieved from:
https://www.comecer.com/theodorico-2-robotic-dispenser-for-radiopharmaceuticals/
Mohamadi M. Design and Manufacture of Automatic Vial Filling Machine and Radiopharmaceutical transferring at Hot Lab of Imaging Centers. Dissertation of M.Sc in Medical Radiation, Islamic Azad University, Qom Branch, 1398 AH. [In Persian]
DFMA ® Boothroyd Dewhurst, Inc. (n.d.). Retrieved April 14, 2016, from:
Mohaghegh Motlagh H. Design and manufacture of automatic radiopharmaceutical syringe filling machine based on design principles for production and assembly. Dissertation of M.Sc in Mechanical Engineering - Applied Design ,Kashan University, 1395 AH. [In Persian]
Bendell A. Introduction to Taguchi methodology, Taguchi methods, In: Proceedings of the 1988 European conference. Elsevier Applied Science, London, 1988: 1-14.
Boothroyd G. Product design for manufacture and assembly.Computer Aided Design. 1994; 26(7): 505-520.
Ishii K, et al. Life-cycle evaluation of mechanical systems. In: Proceedings of the 1993 NSF Design and Manufacturing Systems conference. 1993; 1: 575-579.
Brennan L. et al. Operations planning issues in an assembly/disassembly environment. International Journal of Operations and Production Management. 1994; 14(9): 57-67.
Boothroyd G, et al. Product design for manufacture and assembly. Marcel Dekker, New York, 1994.
_||_ILO, International Labor Office (ILO), Radiation Protection of Workers (ionizing radiation) and ILO code of practice (Geneva: ILO) (1987).
Berger G, et al. Automated synthesis of carbon-abeled radiopharmaceuticals: imipramine, chlorpromazine, nicotin and methionine. Internation Journal of Applied Radiation and Isotopes. 1979; 30 :393-399.
Schelbert H, et al. Emission tomography of the heart. Seminars irz Nzzclear Medicine. 1980; 10: 355-373.
Nazififard M. A novel device for automatic withdrawal and accurate calibration of 99m-Technetium radiopharmaceuticals to minimize radiation exposure to nuclear medicine staff and patient. Radiation Protection Dosimetry.
Nazififard M. Automatic Dispensing and Calibration of Diagnostic Radiopharmaceuticals. Radiation Protection Dosimetry. 2013; 154(4): 510-516.
Robotic Dispenser for Radiopharmaceuticals. Retrieved from:
https://www.comecer.com/theodorico-2-robotic-dispenser-for-radiopharmaceuticals/
Mohamadi M. Design and Manufacture of Automatic Vial Filling Machine and Radiopharmaceutical transferring at Hot Lab of Imaging Centers. Dissertation of M.Sc in Medical Radiation, Islamic Azad University, Qom Branch, 1398 AH. [In Persian]
DFMA ® Boothroyd Dewhurst, Inc. (n.d.). Retrieved April 14, 2016, from:
Mohaghegh Motlagh H. Design and manufacture of automatic radiopharmaceutical syringe filling machine based on design principles for production and assembly. Dissertation of M.Sc in Mechanical Engineering - Applied Design ,Kashan University, 1395 AH. [In Persian]
Bendell A. Introduction to Taguchi methodology, Taguchi methods, In: Proceedings of the 1988 European conference. Elsevier Applied Science, London, 1988: 1-14.
Boothroyd G. Product design for manufacture and assembly.Computer Aided Design. 1994; 26(7): 505-520.
Ishii K, et al. Life-cycle evaluation of mechanical systems. In: Proceedings of the 1993 NSF Design and Manufacturing Systems conference. 1993; 1: 575-579.
Brennan L. et al. Operations planning issues in an assembly/disassembly environment. International Journal of Operations and Production Management. 1994; 14(9): 57-67.
Boothroyd G, et al. Product design for manufacture and assembly. Marcel Dekker, New York, 1994.