ساخت نانومیلههای وانادات بیسموت بهروش حرارتی و بررسی فعالیت فوتوکاتالیستی آنها در تجزیۀ رنگ قرمز کنگو
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو مواد
1 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
کلید واژه: نانومیله, ساختار بلوری, فوتوکاتالیستی, وانادات بیسموت, قرمز کنگو,
چکیده مقاله :
در این مقاله، خواص ساختاری، نوری و فوتوکاتالیستی نانومیلههای وانادات بیسموت مورد بررسی و مطالعه قرار گرفت. نانومیلههای وانادات بیسموت (BiVO4) بهروش حرارتی و در حضور قالب نرم PEG (Polyethylene glycol) ساخته شدند. برای مشخصه یابی نانومیلهها از آنالیزهای پراش پرتوی ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، طیف نگاری پراکندگی انرژی (EDS) و طیف سنجی جذبی مرئی- فرابنفش (UV-Vis) استفاده شد. الگوی XRD تأییدکنندۀ تشکیل ساختار تکمیل برای نانومیلهها است و نتایج آنالیز XRDوEDS نشان دادند که در نانومیلهها عنصر ناخالصی وجود ندارد. از تصویر FESEM مشخص شد که متوسط اندازۀ قطر و طول نانومیلهها به ترتیب برابر 37 و439 نانومتر است. آنالیز UV-Vis نشان داد که شکاف نوری نانومیلههای وانادات بیسموت برابرeV 22/2 است که در محدوده نورمرئی قرار دارد. فعالیت فوتوکاتالیستی نانومیلهها توسط تجزیه فوتوکاتالیستی رنگ قرمز کنگو تحت تابش نور مرئی بررسی شد. طبق نتایج این تحقیق، نانومیلههای وانادات بیسموت با ساختار تکمیل، گزینۀ مناسبی جهت تجزیۀ مواد آلی با نور خورشید میباشد.
[1] A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologiesfor decolourisation of textile wastewaters: perspectives for anaerobic biotechnology, Bioresource technology. 98 (2007) 2369-2385.
[2] R.V. Gonçalves, H. Wender, S. Khan, M.A. Melo, Photocatalytic Water Splitting by Suspended Semiconductor Particles, Nanoenergy. (2018) 107-140.
[3] T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light , The Journal of Physical Chemistry C. 115 (2011) 5657–5666.
[4] T.S. Dabodiya, P. Selvarasu, A.V. Murugan, Tetragonal to Monoclinic Crystalline Phases Change of BiVO4 via Microwave-Hydrothermal Reaction: In Correlation with Visible Light-Driven Photocatalytic Performance, Inorganic Chemistry. 58 (2019) 5096-5110.
[5] P. Pookmanee, S. Kojinok, S. Phanichphant, Bismuth Vanadate (BiVO4) Powder Prepared by the Sol-gel Method, Journal of Metals, Materials and Minerals. 22 (2012) 49-53.
[6] A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Applied Catalysis A. 555 (2018) 47-74.
[7] W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism, Environmental Science & Technology. 46 (2012) 4599–4606.
[8] L.R. Hou, C.Z. Yuan, Facile fabrication of taper-like BiVO4 nanorods with high photocatalytic property under sunlight irradiation, Advanced Materials Research. 96 (2010) 87–92.
[9] R. Huo, X.L. Yang, Y.Q. Liu, Y.H. Xu , Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods, Materials Research Bulletin. 88(2017) 56-61.
[10] X. Liu, J.K. Li, Effect of pH on the Properties of BiVO4 by Hydrothermal Synthesis Method, Solid State Phenomena. 281 (2018) 813-818.
[11] J.P. Deebasree, V. Maheskumar, B. Vidhya, Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication, Ultrasonics Sonochemistry. 45 (2018) 123-132.
[12] G.P. Nagabhushana, G. Nagaraju, G.T. Chandrappa, Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation, Journal of Materials Chemistry A. 2 (2013) 388-394.
[13] D. Ke, T. Peng, L. Ma, P. Cai, and K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light, Inorganic Chemistry. 48 (2009) 4685–4691.
[14] A.S. Manjunatha , N.S. Pavithra , S. Marappa , S.A. Prashanth , G. Nagaraju , Green Synthesis of Flower‐Like BiVO4 Nanoparticles by Solution Combustion Method Using Lemon (Citrus Limon) Juice as a Fuel: Photocatalytic and Electrochemical Study, Chemistry Select. 3 (2018) 13456-13463.
[15] Q. Chen, M. Zhou, D. Ma, D. Jing, Effect of preparation parameters on photoactivity of BiVO4 by hydrothermal method, Journal of Nanomaterials. 2012 (2012) 1-6.
[16] H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties, Materials Chemistry and Physics. 115(2009) 9–13.
[17] E.C. Severo, G.L. Dotto, A.M. Cruz, E.L. Cuellar, E.L. Foletto , Enhanced photocatalytic activity of BiVO4 powders synthesized in presence of EDTA for the decolorization of rhodamine B from aqueous solution, Environmental Science and Pollution Research. 25 (2018) 34123-34130.
[18] R. Ran, J.G. McEvoy, Z. Zhang, Synthesis and Optimization of Visible Light Active BiVO4 Photocatalysts for the Degradation of RhB, Research Article. 2015 (2015) 1-14.
[19] F. Dong, Q. Wu, J. Ma, Y. Chen, Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO4 nanorods tuned by temperature, physica status solidi (a). 206 (2009) 59-63.
[20] K. Pingmuang, J. Chen, W. Kangwansupamonkon, G. G. Wallace, S. Phanichphant , A. Nattestad Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes, Scientific reports. 7 (2017) 8929.
[21] B. Rahimi, A. Ebrahimi, N. Mansouri, N. Hosseini, Photodegradaton process for the removal of acid orange 10 using ttanium dioxide and bismuth vanadate from aqueous solution, Global Journal of Environmental Science and Management. 5 (2019) 43-60.
[22] S. Aghakhaninejad, R. Rahimi, S. Zargari, Application of BiVO4 Nanocomposite for Photodegradation of Methyl Orange, Proceedings. 9 (2019) 1-6.
[23] C.N. Van, W.S. Chang, J.W. Chen, K.A Tsai, W.Y.Tzeng, Y.C. Lin, H.H. Kuo, H.J. Liu, K.D. Chang, W.C. Chou, C.L.Wu, Y.C. Chen, C.W. Luo, Y.J. Hsu, Y.H. Chu, Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement, NanoEnergy. 15 (2015) 625-633.
[24] B. Appavu, S. Thiripuranthagan, S. Ranganathan, E. Erusappan, K. Kannan, BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system, Ecotoxicology and Environmental Safety. 151 (2018) 118-126. [25] Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation, Applied Catalysis B: Environmental. 217 (2017) 21-29.
[26] N. Ghazkoob, M. Zargar Shoushtari, I. Kazeminezhad, S. M. Lari Baghal, Synthesis of BiVO4 nanoparticles by the co-precipitation method and study the crystal structure, optical and photocatalytic properties of them, Iran. J. Crystallogr. Mineral. (IJCM). 28 (2020) 797-806.
[27] H. Lade, S. Govindwar, D. Paul, Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor, Environmental Research and Public Health. 12 (2015) 6894-6918.
[28] M. Wang, X. Xi, C. Gong, X.L. Zhang, G Fan, Open porous BiVO4 nanomaterials: Electronspinning fabrication and enhanced visible light photocatalytic activity, Materials Research Bulletin. 74 (2016) 258-264.
[29] P. Brack, J.S. Sagu, T.A.N. Peiris, A. McInnes, M. Senili, K.G.U. Wijayantha, F. Marken, E. Selli, Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties, Chemical Vapor Deposition. 21 (2015) 41-45.
[30] Y. Ma, H. Jiang, X. Zhang, J. Xing, Y. Guan, Synthesis of hierarchical m-BiVO4 particles via hydro-solvothermal method and their photocatalytic properties, Ceramics International. 40 (2014) 16485-16493.
[31] V.H. Nguyen, Q.T.P. Bui, D.V.N. Vo, K.T. Lim , L.G. Bach, S.T. Do, T.V. Nguyen, V.D. Doan, T.D. Nguyen, T.D. Nguyen, Effective Photocatalytic Activity of Sulfate-Modified BiVO4 for the Decomposition of Methylene Blue Under LED Visible Light, Materials. 12 (2019) 1-19.
[32] A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity, Journal of Alloys and Compounds. 710 (2017) 102-113.
[33] H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, R. Sbiaa, M.S. Dhlamini, Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue, Materials Today: Proceedings. 36 (2021) 328-335.
[34] S. Liu, H. Zhou, G. Dai, W. Wang, Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis, Applied Surface Science. 391(2017) 542-547.