بررسی وبسایتهای شهرداری تهران و ارایه راهکارهای مناسب دادهکاوی
محورهای موضوعی : دانش شناسیشایسته شجاعی کاریزکی 1 , سودابه شاپوری 2 , هاجر زارعی 3
1 - دانشجوی دکتری تخصصی، گروه علم اطلاعات و دانششناسی، گرایش بازیابی اطلاعات، واحد تنکابن، دانشگاه آزاد اسلامی، ایران Shojaee.sh776@gmail.com
2 - استادیار، گروه علم اطلاعات و دانششناسی، گرایش بازیابی اطلاعات، واحد تنکابن، دانشگاه آزاد اسلامی، ایران
3 - استادیار، گروه علم اطلاعات و دانششناسی، گرایش بازیابی اطلاعات، واحد تنکابن، دانشگاه آزاد اسلامی، ایران
کلید واژه: شبکه عصبی, دادهکاوی, درخت تصمیم, شهرداری تهران, وبسایت,
چکیده مقاله :
هدف: هدف اصلی این پژوهش، شناسایی و تجزیه و تحلیل انواع دادههای وبسایت شهرداری تهران و ارایه راهکارهای مناسب دادهکاوی است. روش پژوهش: این پژوهش بنیادی است و از لحاظ ماهیت میتوان آن را تحلیلی در نظر گرفت. روش گردآوری دادههای به صورت میدانی بودهاست و جامعه آماری 47 سایت که از 220 دامنه شهرداری تهران انتخاب شدهاست و برای تجزیه و تحلیل از تکنیکهای دادهکاوی استفاده شدهاست و منبع گردآوری دادهها وبسنجی و ابزار مورد استفاده گوگل آنالیتیکس میباشد. یافتهها: میزان دقت الگوریتم شبکه عصبی معمولی برابر با 25/99% و در نهایت معیار آر.ام.اس.ای الگوریتم شبکه عصبی معمولی برابر با 159/0 است. میزان دقت الگوریتم درخت تصمیم برابر با 99.80% ؛ معیار ام.اس.ای الگوریتم درخت تصمیم برابر با 003/0 و در نهایت معیار آر.ام.اس.ای الگوریتم درخت تصمیم برابر با 045/0است. میزان دقت الگوریتم کی.ان.ان برابر با 81/99% و در نهایت معیار آر.ام.اس.ای الگوریتم کی.ان.ان برابر با 035/0 است نتیجهگیری: بر اساس یافتههای بدست آمده روش دی.بی.اسکن با سایر روشهای پایه جهت تجزیه و تحلیل دادههای وبسایتهای شهرداری تهران برابر و نسبت به سایر روشها از دقت بالاتری برخوردار است.
Objective: The main purpose of this study is to identify and analyze different types of data on the website of Tehran Municipality and to provide appropriate data mining solutions. Method: This research is fundamental and in terms of nature it can be considered analytical. The data collection method was field and the statistical population of 47 sites were selected among 220 domains of Tehran Municipality and data mining techniques were used for analysis and the source of data collection is web analytics and tools used by Google Analytics. Results: The accuracy of the normal neural network algorithm is equal to 99.25% and the RMS standard of the normal neural network algorithm is equal to 0.159. The accuracy of the decision tree algorithm is 99.80% and the MSI criterion of the decision tree algorithm is 0.003 and finally the RMS criterion of the decision tree algorithm is 0.045. The accuracy of the CNN algorithm is equal to 99.81% and finally the RMS criterion of the CNN algorithm is equal to 0.035. Conclusion: Based on the obtained findings, the DB Scan method is equal to other basic methods for analyzing data of Tehran Municipality websites and has a higher accuracy than other methods.
آخوندزاده، ا.؛ مینایی، ب.؛ ربیع زاده گنجی، ث. (1392). کاربرد داده کاوی در ارزیابی مشتریان بانکی. نخستین کنفرانس ملی توسعه مدیریت پولی و بانکی، تهران، مرکز همایشهای بینالملی صدا وسیما،8-9 بهمن، 2-15.
آهنگرکانی، م.؛ خواسته، ح. (1398). تحلیل مصرف آب شهری (خانگی) شهرستان بابل با استفاده از روش های دادهکاوی. اطلاعات جغرافیایی سپهر، 28 (111)، 53 – 69.
امیری، آ.؛ دلجو، غ.؛ قربان یزاده، و. (1388). عوامل مؤثر بر پذیرش سامانه مدیریت شهری تهران ( 137 ) توسط شهروندان. دومین کنفرانس بین المللی شهرداری الکترونیکی،6 (22)، 7-22.
خاکی، غ. (1390). روش تحقیق با رویکرد پایاننامهنویسی. تهران: انتشارات بازتاب.
دانشگاه استنفورد( ۲۰۰۴). Origin of the name "Google". بایگانیشده از اصلی در ۴ ژوئیه ۲۰۱۲. دریافتشده در ۱۶ سپتامبر ۲۰۱۱. http://graphics.stanford.edu/~dk/google_name_origin.html
موسوی نطنزی، م. (1398). گوگل آنالیتیکس چیست و چگونه به آنالیز سایت میپردازد؟https://hamyar.co/what-is-google-analytics/ تاریخ دسترس: 5/5/99
مینایی بیدگلی، ب.؛ آخوندزاده، ا.؛ موسوی، ح. و دیگران (1388). استفاده از داده کاوی در مدیریت ارتباط با شهروند: مورد کاوی سامانه 137 شهرداری تهران. دومین کنفرانس بین المللی شهر الکترونیک، تهران، جهاد دانشگاهی، 2.
Alaminos, D.; Fernández, S. M.; García, F., & et. al.. (2018) Data mining for municipal financial distress prediction. Paper presented at the Industrial Conference on Data Mining.
Bendre, M. R., & Thool, V. R. (2016). Analytics, challenges and applications in big data environment: a survey. Journal of Management Analytics, 3(3), 206-239
Candelieri, A., Conti, D., & Archetti, F. (2014). Improving analytics in urban water management: a spectral clustering-based approach for leakage localization. Procedia-Social and Behavioral Sciences, 108, 235-248.
Fourtané, S (2018). Connected Vehicles in Smart Cities: The Future of Transportation (2018) Published by interestingengineering.com on 16 November 2018
Goebel, M., & Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD explorations newsletter, 1(1), 20-33.
Ling, C., & Delmelle, E. C. (2016). Classifying multidimensional trajectories of neighbourhood change: a self-organizing map and k-means approach. Annals of GIS, 22(3), 173-186.
Spielman, S. E., & Thill, J.-C. (2008). Social area analysis, data mining, and GIS. Computers. Environment and Urban Systems, 32(2), 110-122.
Werner, M.; Gehrke, N., & Nüttgens, M. (2013). Towards Automated Analysis of Business Processes for Financial Audits. Paper presented at the Wirtschaftsinformatik.
Zicari, S.; Arakelyan, A.; Fitzgerald, W, Zaitseva, (2016). Evaluation of the maturation of individual Dengue virions with flow virometry. virology, 488,20-27
_||_