تاثیر غلظت های تحت کشنده دیازینون بر بافت بیضه در ماهی گورخری (Danio rerio)
محورهای موضوعی : مجله پلاسما و نشانگرهای زیستیمعصومه درویشی مجره 1 * , رقیه صفری 2
1 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 - دانشگاه علوم کشاورزی و منابع طبیعی گرگان
کلید واژه: ماهی گورخری, بافت بیضه, دیازینون,
چکیده مقاله :
زمینه و هدف: دیازینون از سموم ارگانوفسفره پرکاربرد در مزارع کشاورزی است که جهت از بین بردن آفات و کرم ساقه خوار در مزارع استفاده می شود. مطالعه حاضر با هدف بررسی اثر غلظت های تحت کشنده دیازینون بر بافت بیضه در ماهی گورخری (Danio rerio) انجام گرفت. روش کار: بدین منظور۲۴۰ عدد ماهی نر با میانگین وزنی ۲/۰ ± ۰۵/۰ پس از ۲ هفته سازگاری با شرایط آزمایشگاه در ۳ تیمار تحت کشنده سم دیازینون که پس از انجام تست LC50 به ترتیب ۸/۰، ۶/۱ و ۲/۳ میلی گرم بر لیتر و تیمار شاهد به مدت ۳۰ روز قرارگرفتند. در پایان دوره از بافت بیضه ماهیان نمونه برداری و سپس مقاطع بافتی تهیه شد. یافته ها: در بررسی بافتی بیشترین ناهنجاری در دوز بالاتر(۲/۳ میلی گرم بر لیتر) مشاهده گردید که کاهش اندازه گناد از مهم ترین آن می باشد. در برش بافتی گروه شاهد بافت بیضه از اندازه و رشد مناسب برخوردار بوده و سلول ها در مرحله رسیدگی جنسی قرار داشتند، در صورتی که در تیمار ۸/۰ میلی گرم بر لیتر آتروفی سلول های جنسی بافت بیضه مشاهده شد. همچنین در این تیمار دیواره لوبول ها نیز از بین رفته بود. در تیمار ۶/۱ میلی گرم بر لیتر دژنره شدن و آتروفی سلول های جنسی، از بین رفتن شکل و دیواره لوبول ها مشاهده شد. در بالاترین غلظت سم، دژنره شدن و آتروفی سلول های جنسی، از بین رفتن شکل و دیواره لوبول ها و کاهش تعداد سلول های جنسی مشاهده شده که این کاهش تعداد سلول های جنسی و عوارض مشاهده شده موجب کاهش اندازه بافت بیضه نیز می شود. نتیجه گیری: این مشاهدات نشان دهنده افزایش عوارض و ناهنجاری های سم دیازینون بر بافت بیضه ماهی گورخری با افزایش غلظت سم می باشد.
Inroduction & Objective: Diazinon is an organophosphoric pesticide used in agricultural fields. The aim of this study was to evaluate the effect of sublethal concentrations of diazinon on testicular tissue in Danio rerio. Material and Methods:For this purpose, 240 male animals with mean weight of 0.20 ± 0.05 were subjected to 0.8, 1.6 and 3.2 mg / l of diazinon and control for 30 days. Results: In histopathological study, the highest abnormality was observed in the highest dose (3.2 mg / l) and the most important abnormality was reduction in gonad size. In control group, the testicular tissue had adequate size and growth, and the cells were in the sexual maturity stage, but in 0.8 mg/ l, cellular atrophy and lose of lobular walls was observedIn 1.6 mg / l, the degeneration and atrophy of the sexual cells, destruction of shape and walls of the lobules was observed. At the highest concentration, the degeneration and atrophy of the sexual cells, destruction of shape and wall of the lobules and the decrease in the number of sex cells were observed. This decrease in the number of sexual cells results in reduction of testicular tissue size. Conclusion: These observations indicate an increase in complications and anomalies with the increase in toxin concentrations
1-بنایی، م.، میرواقفی، ع.ر.، احمدی، ک.و.، عاشوری، ر. ۱۳۸۸. تاثیر غلظت تحت کشنده دیازینون بر تغییرات هیستوپاتولوژیک بیضه و تخمدان ماهی کپور معمولی(Cyprinus carpio). مجله بیولوژی دریا. سال اول. شماره ۲. ص ۲۶- ۱۴.
2-پژند، ذ. ۱۳۷۸. تعیین غلظت کشنده(LC5096h) سموم حشره کش دیازینون و علف کش بوتاکلر بر روی دو گونه از ماهیان خاویاری قره برون و ازون برون. پایان نامه کارشناسی ارشد رشته شیلات، دانشگاه آزاد اسلامی واحد لاهیجان. ص ۱۶- ۱۲.
3-خانجانی، ع.، پورمیرزا، م. سم شناسی. چاپ اول. دانشگاه بوعلی سینا. ۱۳۸۰، ۱۶۴ ص.
4-درویشی، م.، صفری، ر. ۱۳۹۷. ماهی گورخری(Danio rerio) به عنوان مدل ژنوتوکسیکولوژی. آبزیان زینتی. سال پنجم. شماره ۴. ص ۲۳-۳۴.
5-فداکارماسوله، ف.، مجازی امیری، ب.، میرواقفی، ع.ر.، نعمت الهی، م.ع. ۱۳۹۰. بررسی تاثیر تخریبی سم دیازینون بر ساختار بیضه ماهی سفید دریای خزر(Ruilus frisii kutum) با استفاده از تکنیک کشت بافت (در شرایط In Vitro). مجله منابع طبیعی ایران. سال شست و چهارم. شماره ۲. ص ۱۲۸- ۱۲۱.
6-محمد نژاد شموشکی، م.، سلطانی، م.، شریف پور، ع.، ایمانپور، م.ر.، بهارلویی، ا.، نعیمی، م.ا. ۱۳۹۰. بررسی اثر غلظت های تحت کشنده سم دیازینون بر بافت های گناد، مغز و قلب مولدین نر ماهی سفید(Rutilus frisii kutum Kamensky, 1901). مجله دامپزشکی دانشگاه آزاد اسلامی واحد تبریز. سال پنجم. شماره ۳. ص ۱۲۹۴- ۱۲۸۷.
7-وثوقی، غ.، مستجیر، ب. ماهیان آب شیرین. تهران: انتشارات دانشگاه تهران. ۳۱۷ ص.
8.Abadin, H., Todd, D., Wohlers, D., Hard, C.M. (2009). Priority data needs for Diazinon. Syracuse Research Corporation, 75 p.
9.Abd, M.E.A., Sahlab, A., Abd, M.E.K. (1994). Influence of diazinon and deltamethrin on reproductive organs and fertility of male rats. DTW Deutsche tierarztliche Wochenschrift, 101(6);230-2.
10.Arcand‐Hoy, L.D., Benson, W.H. (1998). Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environmental Toxicology and Chemistry: An International J, 17(1):49-57.
11.Banai, M.,Miryaghefi, A.R., Ashouri, R. (2009). Effect of sublethal concentration of diazinonon histopathological changes of male carp (Cyprnius carpio) testis. Lagoons conference in Azad university of Ahvaz, 127p.
12.Castano, A., Bols, N., Braunbeck, T., Dierick, P., Halder, M., Isomaa, B., et al. (1986). Diazinon hazards to fish, wildlife and invertebrates: a synoptic review. US Fish and Wildlife Service, US, 85;1-38.
13.Cerda, J., Conrad, M., Markl, J., Brand, M., Herrmann, H. (1998). Zebrafish vimentin: molecular characterisation, assembly properties and developmental expression. Europen Journal of Cell Biology, 77(3);175-187.
14.Chang, J., Liu, S., Zhou, S., Wang, M., Zhu, G. (2013). Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Experimental and Toxicology Pathology, 65(1-2); 205-209.
15.Croucher, L., Jewess, P., Roberts, M.C. (2007). Metabolic Pathways of Agrochemicals: Part 2: Insecticides and Fungicides: Royal Society of Chemistry.
16.Dahlgren, J., Takhar, H., Ruffalo, C., Zwass, M. (2004). Health effects of diazinonon a family. Journal of Toxicology: Clinical Toxicology, 42(5);579-91.
17.Dooley, K., Zon, L.I. (2000). Zebrafish: a model system for the study of human disease. Development, 10(3);252-256.
18.Dutta, H., Meijer, H. (2003). Sublethal effects of diazinon on the structure of the testis of bluegill, Lepomis macrochirus: a microscopic analysis. Environmental pollution, 125(3);355-60.
19.Dutta, H.M., Maxwell, L.B. (2003). Histological examination of sublethal effects of diazinon on ovary of bluegill, Lepomis macrochirus. Environmental pollution, 121 (1);95-102.
20.Eisen, J.S. (1996). Zebrafish make a big splash. Cell, 87(6);969-977.
21.Fanta, E., Rios, F.S.A., Romão, S., Vianna, A.C.C., Freiberger, S. (2003). Histopathology of the fish Corydoraspaleatus contaminated with
sublethal levels of organophosphorus in water and food. Ecotoxicology and environmental safety, 54(2);119-30.
22.Fattahi, E., Jorsaraei, S.G.A., Parivar, K.,
Moghaddamnia, A.A. (2010). The effects of a single dosage of Diazinon and Hinosan on the structure of testis tissue and sexual hormones in Mice. Yakhteh Medical Journal, 12 (3);405-410.
23.Figueiredo-Fernandes, A., Ferreira-Cardoso, J.V., Garcia-Santos, S., Monteiro, S.M., Carrola, J., Matos, P. (2007). Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesquisa Veterinária Brasileira, 27(3);103-9.
24.Gerlai, R., Lahav, M., Guo, S., Rosenthal, A. (2000). Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacology Biochemistry and Behavior, 67(4);773-782.
25.Goldsmith, P. (2004). Zebrafish as a pharmacological tool: the how, why, and chemical toxicity. Toxicological Sciences, 86;6-19.
26.Hamm, J., Wilson, B., Hinton, D. (1998). Organophosphate-induced acetyl cholin esterase inhibition and embryonic retinal cell necrosis in vivo in the teleost(Oryzias latipes). Neurotoxicology, 19(6);853-569.
27.Hatjian, B., Mutch, E., Williams, F., Blain, P., Edwards, J. (2000). Cytogenetic response without changes in peripheral cholin esterase
enzymes following exposure to a sheep dip containing diazinon in vivo and in vitro. Mutation Research /Genetic Toxicology and Environmental Mutagenesis, 472(1);85-92.
28.Hill, A.J., Teraoka, H., Heideman, W., Peterson, R.E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences, 86(1);6-19.
29.Konda, L.N., Czinkota, I., Füleky, G., Morovján, G. (2002). Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil. J of Agricultural and Food Shemistry, 50(25);7326-31.
30.Kuivila, K.M., Foe, C.G. (1995). Concentrations, transport and biological effects of dormant spray pesticides in the San Francisco Estuary, California. Environmental Toxicology and Chemistry, 14(7);1141-50.
31.Lasheidani, M., Balouchi, S., Keyvan, A., Jamili, S., Falakru, K. (2008). Effect of butachlor on density, volume and number of abnormal sperms in caspian kutum(Rutilus Frisii Kutum). Research J of Environmental Sciences, 2; 474-482.
32.Lin, W., Guo, H., Li, Y., Wang, L., Zhang, D., Hou, J., et al. (2018). Single and combined exposure of microcystin-LR and nitrit results in
reproductive endocrine disruption via hypo thalamic pituitary-gonadal-liver axis.Chemo sphere, 211;1137-1146.
33.Maxwell, L.B., Dutta, H. (2005). Diazinon-induced endocrine disruption in bluegill sunfish, Lepomis macrochirus. Ecotoxicology and Environmental Safety, 60(1); 21-7.
34.Pina-Guzman, B., Solis-Heredia, M., Quintanilla-Vega, B. (2005). Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicology and Applied pharmacology, 202(2);189-98.
35.Qiao, Q., Liu, W., Wu, K., Song, T., Hu, J., Huang, X. (2013). Female zebrafish(Danio rerio) are more vulnerable than males to microcystin-LR exposure, without exhibiting estrogenic effects. Aquatic toxicology, 142; 272-282.
36.Sánchez-Peña, L., Reyes, B., López-Carrillo, L., Recio, R., Morán-Martínez, J., Cebrián, M. (2004). Changes on sperm chromatin structure in organophosphorus agricultural workers. Toxicology and Applied Pharmacology, 196; 108-13.
37.Sapozhnikova, Y., Bawardi, O., Schlenk, D. (2004). Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere, 55 (6); 797-809.
38.Schulz, R.d.W., Menting, S., Bogerd, J., França, L.R., Vilela, D.A., Godinho, H.P. (2005). Sertoli cell proliferation in the adult testis evidence from two fish species belonging to different orders. Biology of reproduction, 73(5); 891-8.
39.Schulz, R.W., De França, L.R., Lareyre, J.J., LeGac, F., Chiarini-Garcia, H., Nobrega, R.H. (2010). Spermatogenesis in fish. General and comparative endocrinology, 165(3); 390-411.
40.Spitsbergen, J.M., Kent, M.L. (2003). The state of the art of the zebrafish model for toxicology and toxicopathology research-advantages and current limitations. Toxicologic pathology, 31(1-suppl); 62-87.
41.Su, Y., Li, L., Hou, J., Wu, N., Lin, W., Li, G. (2016). Life-cycle exposure to microcystin-LR interferes with the reproductive endocrine system of male zebrafish. Aquatic Toxicology, 175; 205-12.
42.Swanson, P., Dickey, J.T., Campbell, B. (2003). Biochemistry and physiology of fish gonadotropins. Fish Physiology and Biochemistry, 28(1-4); 53-9.
43.Teng, M., Qi, S., Zhu, W., Wang, Y., Wang, D., Dong, K., Wang, C. (2018). Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebra
fish (Danio rerio). Environmental Pollution, 233; 208-217.
44.Trinchet, I., Djediat, C., Huet, H., Dao, S.P., Edery, M. (2011). Pathological modifications following sub-chronic exposure of medaka fish(Oryzias latipes) to microcystin-LR. Reproductive toxicology, 32(3); 329-340.
45.Van Der Geest, H., Stuijfzand, S., Kraak, M., Admiraal, W. (1997). Impact ofa diazinon calamity in 1996 on the aquatic macroinvertebrates in the River Meuse, The Nether lands. Netherland J of Aquatic Ecology, 30 (4); 327-30.
46.Yilmaz, N., Yilmaz, M., Altuntas, I. (2012). Diazinon-induced brain toxicity and protection by vitamins E plus C. Toxicology and industrial health, 28 (1); 51-57.
47.Yu, L., Liu, C., Chen, Q., Zhou, B. (2014). Endocrine disruption and reproduction impairment in zebrafish after long‐term exposure to DE‐71. Environmental toxicology and chemistry, 33(6);1354-1362.