پراکندگی جغرافیایی و عوامل زیستمحیطی مؤثر در پیشبینی پراکنش Heliothis peltigera (Lep.: Noctuidae) در ایران
محورهای موضوعی : حشره شناسیحسین فلسفی 1 , هلن عالیپناه 2 * , هادی استوان 3 , شهرام حسامی 4 , رضا ظهیری 5
1 - گروه حشرهشناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - بخش تحقیقات ردهبندی حشرات، مؤسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
3 - عضو هیئت علمی /دانشگاه آزاد اسلامی، واحد شیراز، دانشکده علوم کشاورزی-گروه حشره شناسی،استان فارس، ایران.
4 - گروه حشرهشناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
5 - دپارتمان علوم طبیعی، بخش حشرهشناسی، موزه تاریخ طبیعی کارلسروهه، کارلسروهه، آلمان
کلید واژه: انتشار, متغیرهای زیستمحیطی, MaxEnt, مدلهای توزیع گونهها, Noctuidae,
چکیده مقاله :
کرم قوزه گلرنک، Heliothis peltigera (Denis & Schiffermüller)، یکی از آفات کشاورزی شناخته شده در دنیا و ایران است که به برخی از گیاهان مهم اقتصادی خسارت وارد میکند. در این تحقیق بهکمک نرمافزارهای MaxEnt، R و ArcGIS، مناطق مناسب برای انتشار بالقوۀ این آفت در ایران بر مبنای متغیرهای اقلیمی و دادههای مربوط به حضور گونه پیشبینی و مهمترین عوامل اقلیمی تأثیرگذار مورد بررسی قرار گرفتند. نتایج نشان داد که دو استان گیلان و مازندران، بیشتر نواحی استان بوشهر، جنوب استان هرمزگان و غرب استانهای آذربایجان غربی، کردستان و کرمانشاه مناسبترین شرایط را برای استقرار این گونه دارند. علاوهبراین، عواملی چون بارش در مرطوبترین سه ماه سال (bio16)، سرعت متوسط باد در شهریور ماه (wind8) و اردیبهشت ماه (wind5)، و نسبت میانگین دمای روز به محدودۀ دمای سالیانه (bio3)، بیشترین تأثیر را در انتشار گونهها دارند. بدیهی است، پیشبینی توزیع این آفت در مناطقی که میزبانهای اصلی آن در آنجا سطح کشت بالایی دارند، میتواند در توسعه استراتژیهای کنترلی آفت حایز اهمیت باشد.
The bordered straw, Heliothis peltigera (Denis & Schiffermüller) is a well-known agricultural pest of some economically important plants throughout the world and Iran. In this paper, suitable areas for the potential distribution of this species in Iran were predicted using MaxEnt model, R package and ArcGIS based on its occurrence data and the bioclimatic factors. Moreover, the important climatic factors affecting their potential distribution were investigated. Based on the results of this study, the most suitable areas for this species are Gilan and Mazandaran Provinces. Additionally, most parts of the Bushehr Province and southern parts of the Hormozgan Province as well as western parts of the West Azarbaijan, Kordestan and Kermanshah Provinces have suitable conditions compared with the other areas. The main environmental variables contributing their distribution were precipitation of the wettest quarter (bio16), average wind speed in August (wind8) and May (wind5), and isothermality (bio2/bio7) (bio3). Predicting the distribution of this pest in the areas with high cultivation of its main hosts, can be important in the development of pest control strategies, obviously.
Acevedo, P., Ward, I.A., Real, R., & Smith, G.C. 2010. Assessing biogeographical relationships of ecologically related species using favour ability functions: a case study on British deer. Diversity and Distributions, 16: 515–525. http://do.org/10.1111/j.1472-4642.2010.00662.x
Anonymous. 2021-2022. Agricultural statistics 2021-2022, crops. Vol. 1. Vice President of Statistics, Center for Statistics, Information and Communication Technology. 103 p. (In Persian).
Aragón, P. & Lobo, J.M. 2012. Predicted effect of climate change on the invasibility and distribution of the Western corn root-worm. Agricultural and Forest Entomology, 14 (1): 13–18. https://doi.org/10.1111/j.1461-9563.2011.00532.x
Ayten, S., Beyarslan, A. & Ülgentürk, S. 2020. A new larval parasitoid of Heliothis peltigera (Denis & Schiffermüller) (Lepidoptera: Noctuidae), Aleiodes (Chelonorhogas) miniatus (Herrich-Schäffer) (Hymenoptera: Braconidae: Rogadinae). Türkiye Biyolojik Mücadele Dergisi, 11 (1): 83–89. http://doi.org/10.31019/tbmd
De Meyer, M., Robertson, M.P. & Mansell, M.W. 2010. Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae). Bulletin of Entomological Research, 100 (1): 35–48. https://doi.org/10.1017/S0007485309006713
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García Marquéz, J.R., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 6 (1): 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Ebrahimi Khusfi, M. & Ebrahimi Khusfi, Z. 2023. An analysis of the Trend Changes in Water Resources and Factors Affecting it in the Central Plateau of Iran Using Satellite Products. Iranian Remote Sensing & GIS, 15 (4): 41–60.
Epstein, P.R. et al. 1998. Biological and physical signs of climate change: Focus on mosquito-borne diseases. Bulletin of the American Meteorological Society, 79 (3): 409–418. https://doi.org/10.1175/1520-0477(1998)0792.0.CO;2
ESRI. 2016. ArcGIS 10.5. Redlands, CA: Environmental Systems Research Institute.
Falsafi, H., Alipanah, H., Ostovan, H., Hesami, SH. & Zahiri, R. 2022. Forecasting the potential distribution of Spodoptera exigua and S. littoralis (Lepidoptera, Noctuidae) in Iran. Journal of Asia-Pacific Entomology. No. 25(3): 101956. https://doi.org/10.1016/j.aspen.2022.101956
Falsafi, H., Alipanah, H., Ostovan, H., Hesami, SH. & Zahiri, R. 2024. Investigation of the most important climatic factors affecting distribution of Autographa gamma and Agrotis segetum in Iran. Applied Entomology & Phytopathology, 92 (in press).
Fan, S., Chen, C., Zhao, Q., Wei, J. & Zhang, H., 2020. Identifying potentially climatic suitability areas for Arma custos (Hemiptera: Pentatomidae) in China under climate change. Insects, 11: 674. https://doi.org/10.3390/insects11100674.
Fibiger M., Ronkay, L., Steiner, A. & Zilli, A. 2009. Noctuidae Europaeae. Vol. 11, Pantheinae, Dilobinae, Acronictinae, Eustrotinae, Nolinae, Bagisarinae, Acontiinae, Metoponiinae, Heliothinae and Bryophilinae. Entomological Press, Soro, 504 p.
García, A., 2006. Using ecological niche modelling to identify diversity hotspots for the Herpetofauna of Pacific lowlands and ldjacent interior valleys of Mexico. Biological Conservation, 130 (1): 25–46. https://doi.org/10.1016/j.biocon.2005.11.030.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and R. Moore. 2020. Google Earth engine: planetary-scale geospatial analysis for everyone. Remote sensing of environment. Google.
Hameed, A., Shahzad, M.S., Ahmad, S. & Karar, H. 2015. Forecasting and Modelling of Helicoverpa armigera (Hüb.) in Relation to Weather Parameter in Multan, Punjab, Pakistan. Pakistan Journal of Zoology, 47 (1): 15–20.
Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. 2006. The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography, 29: 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Hernandez, P.A., Franke, I., Herzog, S.K., Pacheco, V., Paniagua, L., Quintana, H.L., Soto, A., Swenson, J.J., Tovar, C., Valqui, T.H., Vargas, J. & Young, B.E. 2008. Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17: 1353–1366. http://doi.org/10.1007/s10531-007-9314-z
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15): 1965–1978. https://doi.org/10.1002/joc.1276
Hughes, L. 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution, 15 (2): 56–61. https:// doi.org/10.1016/S0169-5347(99)01764-4
Iqbal, N. & Mohyuddin, A.I. 1990. Eco-biology of Heliothis spp. in Pakistan. Pakistan Journal of Agricultural Research, 11: 257–266.
Jabbari, H., Pourdad, S.S., Omidi, A., Nazari, M., Sadeghi Garmaroodi, H., Shahsavari, M., Noorgholipour, F., Razavi, R., Karaminezhad, M., Keyhanian, A.A., Jamshidi Moghaddam, M., Safari, M., Akbari, M. & Sharif Nasab, H. 2019. Technical instructions for safflower cultivation (rainfed and irrigated). Seed and Plant Improvement Institute. 40 p.
Jong, de Y. & Döring, M. 2016. Fauna Europaea - Lepidoptera. Fauna Europaea Consortium. Checklist dataset https://doi.org/10.15468/0ub3co (accessed via GBIF.org on 11 June 2024).
Kadmon, R., Farber, O. and A. Danin. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic Models. Ecological Applications, 14: 401–413. https://doi.org/10.1890/02-5364
Kriticos, D.J., Ota, N., Hutchison, W.D., Beddow, J., Walsh, T, Tay, W.T., Borchert, D.M., Paula-Moreas, S.V., Czepak, C. & Zalucki, M.P. 2015. The Potential Distribution of Invading Helicoverpa armigera in North America: Is It Just a Matter of Time?. PLoS ONE, 10 (3): e0119618. http://doi.org/10.1371/journal.pone.0119618
Larson, S.R., DeGroote, J.P., Bartholomay, L.C. & Sugumaran, R. 2010. Ecological niche modeling of potential West Nile virus vector mosquito species in Iowa. Journal of Insect Science, 10: 1–17. https://doi.org/10.1673/031.010.11001
Li, W. & Guo, Q. 2013. How to assess the prediction accuracy of species presence–absence models without absence data?. Ecography, 36 (7): 788–799. https://doi.org/10.1111/j.1600-0587.2013.07585.x
Liu, C., White, M. & Newell, G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40 (4): 778–789.
Manjunath, T.M., Patel R.C. & Yaoav, D.N. 1976. Observations on Heliothis peltigera (Sehiff.) (Lep.: Noctuidae) and its natural enemies in Anand (Gujarat State, India). Proceedings Indian Academy of Sciences, 83 (2): 55–65.
Matov, A., Zahiri R., & Holloway, J.D. (2008). The Heliothinae of Iran (Lepidoptera: Noctuidae). Zootaxa, 1763: 1–37.
Mesgaran, M., Madani, K., Hashemi, H. & Azadi, P. 2016. Evaluation of land and precipitation for agriculture in Iran, working paper 2, stanford Iran 2040 project. Stanford University. https://purl.stanford.edu/vf990qz0340
Nematollahi, M.R. & Bagheri, M.R. 2018. Distribution and Population density of Safflower Pests and their Natural Enemies in Isfahan Province, Iran. Journal of Applied Research in Plant Protection, 7 (3): 91–101.
Nemati, A., Ghoreishi Najafabadi, S.H., Joodaki, G. & Mousavi Nadoushni, S.S. 2019. Evaluation of Agricultural Drought Characteristics in Iran's Central Plateau Catchment Using GRACE Satellite. Iranian Journal of Soil and Water Research, 50: 313–327. https://doi.org/10.22059/ijswr.2018.251136.667840
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J.K., Thomas, C.D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W.J., Thomas, J.A. & Warren, M. 1999. Poleward shifs in geographical ranges of butterfly species associated with regional warming. Nature, 399 (6736), 579–583. https://doi.org/10.1038/21181.
Parvin, A. 1990. Some biological features of Heliothis peltigera Schiff on Safflower. Applied Entomology & Phytopathology, 57 (1–2): 45–51.
Pearson, R.G., Raxworthy, C.J., Nakamura, M. and A.T. Peterson. 2007. Predicting species distribution from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102–117. http://doi.org/10.1111/j.1365-2699.2006.01594.x
Pedgley, D.E. & Yathom, S. 1993. Windborne moth migration over the Middle East. Ecological Entomology, 18: 67–72.
Peterson, A.T. and J. Soberón. 2012. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza & Conservação, 10 (2): 1–6. http://doi.org/10.4322/natcon.2012.019
Peterson, A.T., Papes, M. & Soberón, J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213 (1): 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Peterson, A.T., Soberón, J., Pearson, A.J., Anderson, R.P., Martínez-Meyer, E. & Nakamura, M. 2011. Modelling Ecological Niches: Modelling Algorithms: Ecological Niches and Geographic Distributions, Monographs in Population Biology. Princeton University Press, Princeton, NJ, pp. 101–112.
Phillips, S.J. 2010. A brief tutorial on Maxent (American Museum of Natural History, New York): Lessons in Conservation, 3: 108–135.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Phillips, S.J. & Dudík, M. 2008. Modeling of Species Distributions with MaxEnt: New Extensions and a Comprehensive Evaluation. Ecography, 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.
Ragionieri, L., Özbagcı, B., Neupert, S., Salts, Y., Davidovitch, M., Altstein M. & Predel, R. 2017. Identification of mature peptides from pban and capa genes of the moths Heliothis peltigera and Spodoptera littoralis. Peptides, 94: 1–9.
Roura-Pascual, N. Brotons, L., Peterson, A.T. and W. Thuiller. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Journal of Biological Invasions, 11: 1017–1031. https://doi.org/10.1007/s10530-008-9313-3
Saeidi K., A. Nur Azura, D. Omar & F. Abood. 2011. Pests of safflower (Carthamus tinctorious l.) and their natural enemies in Gachsara, Iran. South Asian Journal of Experimental Biology, 1 (6): 286–291.
SCI. 2018-2019. Iran statistic yearbook, 1. Land and climate. Available from URL: https://www.amar.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2018-2019. 88 pp. (accessed 5 May 2024).
SCI. 2021-2022. Iran statistic yearbook, 1. Land and climate. Available from URL: https://www.amar.org.ir/english/Iran-Statistical-Yearbook/Statistical-Yearbook-2021-2022. 86 pp. (Accessed 5 May 2024).
Simoglou, K.B., Anastasiades, A.I. & Baixeras, J. 2015. First report of the bordered straw, Heliothis peltigera, οn sunflower in Greece. Entomologia Hellenica, 24: 31–36.
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V. & Lemić, D. 2021. The impact of climate change on agricultural insect pests. Insects, 12 (5), 440. https://doi.org/10.3390/insects12050440 (2021)
Srivastava, C.P., Joshi, N. & Trivedi, T.P. 2010. Forecasting of Helicoverpa armigera populations and impact of climate change. Indian Journal of Agricultural Sciences, 80 (1): 3–10.
Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science. 240: 1285–1293.
Wakil, W., Ghazanfar, M.U., Kwon, Y.J., Qayyum, M.A. & Nasir, F. 2010. Distribution of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) in tomato fields and its relationship to weather factors. Entomological Research, 40: 290–297. http://doi.org/ doi: 10.1111/j.1748-5967.2010.00301.x
Wang YS. Xie BY. Wan FH. Xiao QM. & Dai LY. 2007. Potential geographic distribution of Radopholus similis in China. Agricultural Sciences in China, 6 (12):1444–1449. https://doi.org/10.1016/S1671-2927(08)60006-1
Weigand, S. & Tahhan, O. 1990. Chickpea insect pests in the Mediterranean zones and new approaches to their management, pp. 169–175, In: van Rheenen, H.A. & Saxena, M.C. (Eds) Chickpea in the Nineties: Proceedings of the Second International Workshop on Chickpea Improvement, 4-8 December 1989, ICRISAT, Patancheru, India.
Zhao, H., Xian, X., Zhao, Z., Zhang, G., Liu, W. & Wan, F. 2022. Climate Change Increases the Expansion Risk of Helicoverpa zea in China According to Potential Geographical Distribution Estimation. Insects, 13: 79. https://doi.org/10.3390/insects13010079
Zhu, J., Li, B.-p. & Meng, L. 2011. Simulation and prediction of potential distribution of Helicoverpa armigera in China under global warming. Chinese Journal of Ecology, 30 (7): 1382–1387. (In Chinese).