کاربرد توموگرافی مقاومتی الکتریکی در اکتشافات باستان شناسی
مهیار رادک
1
(
دانشگاه مازندران
)
آنیتا اخگر
2
(
دانشگاه مازندران
)
کلید واژه: توموگرافی مقاومتی الکتریکی, تصویربرداری زیرسطحی, تصویربرداری مقاومتی, ژئوفیزیک,
چکیده مقاله :
باستان شناسی، مطالعه تاریخ بشر از طریق بازیابی و تجزیه و تحلیل مصنوعات، سازه ها و سایر بقایای فیزیکی، مدت هاست که بر تکنیک های حفاری سنتی برای کشف گنجینه های پنهان از گذشته متکی بوده است. با این حال، پیشرفتها در روشهای ژئوفیزیک، تغییر پارادایم در کاوشهای باستانشناسی را ایجاد کرده است. در میان این روشها، توموگرافی مقاومتی الکتریکی به عنوان ابزاری قدرتمند ظاهر شده است که روش باستانشناسان را برای بررسی و درک مکانهای باستانی متحول میکند. توموگرافی با مقاومت الکتریکی با ارائه تصویربرداری غیرتهاجمی زیرسطحی با وضوح بالا، بینش های ارزشمندی را در مورد ویژگی ها، سازه ها و مصنوعات مدفون ارائه می دهد و در عین حال حفاری های مخرب را به حداقل می رساند. در این مقاله، ما یک کاوش دقیق و جامع از توموگرافی مقاومت الکتریکی را از طریق مطالعات شبیهسازی انجام شده با استفاده از نرمافزار قدرتمند کامسول ارائه میکنیم. با استفاده از کامسول، پیچیدگیهای توموگرافی مقاومت الکتریکی را بررسی میکنیم و پارامترهای تأثیرگذار مختلف را که به طور قابلتوجهی بر کیفیت و دقت نتایج تأثیر میگذارند، تجزیه و تحلیل میکنیم. از طریق شبیهسازیها، ما بینشهای ارزشمندی در مورد رفتار این پارامترها و نمودارهای مربوط به آنها به دست میآوریم و اصول اساسی تفسیر دادههای توموگرافی مقاومت الکتریکی را روشن میکنیم.
چکیده انگلیسی :
Archaeology, the study of human history through the recovery and analysis of artifacts, structures, and other physical remains, has long relied on traditional excavation techniques to uncover hidden treasures from the past. However, advances in geophysical methods have brought about a paradigm shift in archaeological excavations. Among these methods, electrical resistivity tomography has emerged as a powerful tool that revolutionizes the way archaeologists investigate and understand ancient sites. By providing non-invasive, high-resolution subsurface imaging, electrical resistivity tomography offers valuable insights into buried features, structures, and artifacts while minimizing destructive excavation. In this paper, we present a detailed and comprehensive exploration of electrical resistivity tomography through simulation studies performed using the powerful COMSOL software. Using COMSOL, we delve into the complexities of electrical resistivity tomography and analyze the various influencing parameters that significantly affect the quality and accuracy of the results. Through simulations, we gain valuable insights into the behavior of these parameters and their corresponding graphs, elucidating the fundamental principles of electrical resistivity tomography data interpretation.
- Kemna, A., Vanderborght, J., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267(3-4), 125-146. doi: 10.1016/S0022-1694(02)00145-2.
- Morelli, G. I. A. N. F. R. A. N. C. O., & LaBrecque, D. J. (1996). Advances in ERT inverse modelling. European Journal of Environmental and Engineering Geophysics, 1(2), 171-186.
- LaBrecque, D. J., Ramirez, A. L., Daily, W. D., Binley, A. M., & Schima, S. A. (1996). ERT monitoring of environmental remediation processes. Measurement Science and Technology, 7(3), 375. 10.1088/0957-0233/7/3/019
- Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. Geophysics, 73(3), G7-G17. https://doi.org/10.1190/1.2907156
- Orlando, L. (2013). GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology. Journal of Applied Geophysics, 89, 35-47.
- Deiana, R., Deidda, G. P., Cusí, E. D., van Dommelen, P., & Stiglitz, A. (2022). FDEM and ERT measurements for archaeological prospections at Nuraghe S'Urachi (West‐Central Sardinia). Archaeological Prospection, 29(1), 69-86. https://doi.org/10.1016/j.jappgeo.2012.11.006
- Lange-Athinodorou, E., Abd El-Raouf, A., Ullmann, T., Trappe, J., Meister, J., & Baumhauer, R. (2019). The sacred canals of the Temple of Bastet at Bubastis (Egypt): New findings from geomorphological investigations and Electrical Resistivity Tomography (ERT). Journal of Archaeological Science: Reports, 26, 101910. https://doi.org/10.1016/j.jasrep.2019.101910
- Deiana, R., Bonetto, J., & Mazzariol, A. (2018). Integrated electrical resistivity tomography and ground penetrating radar measurements applied to tomb detection. Surveys in Geophysics, 39(6), 1081-1105. https://doi.org/10.1007/s10712-018-9495-x
- Obrocki, L., Eder, B., Gehrke, H. J., Lang, F., Vött, A., Willershäuser, T., ... & Vikatou, O. (2019). Detection and localization of chamber tombs in the environs of ancient Olympia, Peloponnese, Greece, based on a combination of archaeological survey and geophysical prospection. Geoarchaeology, 34(6), 648-660. https://doi.org/10.1002/gea.21724
- Mol, L., & Preston, P. R. (2010). The writing's in the wall: a review of new preliminary applications of electrical resistivity tomography within archaeology. Archaeometry, 52(6), 1079-1095.
- Papadopoulos, N., Sarris, A., Yi, M. J., & Kim, J. H. (2009). Urban archaeological investigations using surface 3D ground penetrating radar and electrical resistivity tomography methods. Exploration Geophysics, 40(1), 56-68. https://doi.org/10.1071/EG08107
- Nowaczinski, E., Schukraft, G., Rassmann, K., Reiter, S., Müller‐Scheeßel, N., Hecht, S., ... & Bátora, J. (2015). A multidimensional research strategy for the evaluation of settlement pits: 3d electrical resistivity tomography, magnetic prospection and soil chemistry. Archaeological Prospection, 22(4), 233-253. https://doi.org/10.1002/arp.1510
- Tsokas, G. N., Tsourlos, P. I., Vargemezis, G., & Novack, M. (2008). Non‐destructive electrical resistivity tomography for indoor investigation: the case of Kapnikarea Church in Athens. Archaeological prospection, 15(1), 47-61. https://doi.org/10.1002/arp.321
- Tsourlos, P. I., & Tsokas, G. N. (2011). Non‐destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeological Prospection, 18(3), 173-186. https://doi.org/10.1002/arp.416
- Hemeda, S. (2013). Electrical Resistance Tomography (ERT) subsurface imaging for non-destructive testing and survey in historical buildings preservation. Australian Journal of Basic and Applied Sciences, 7(1), 344-357.
- Piroddi, L., Calcina, S. V., Trogu, A., & Ranieri, G. (2020). Automated Resistivity Profiling (ARP) to explore wide archaeological areas: The prehistoric site of Mont’e Prama, Sardinia, Italy. Remote Sensing, 12(3), 461. https://doi.org/10.3390/rs12030461
- Gaber, A., Gemail, K. S., Kamel, A., Atia, H. M., & Ibrahim, A. (2021). Integration of 2D/3D ground penetrating radar and electrical resistivity tomography surveys as enhanced imaging of archaeological ruins: A case study in San El‐Hager (Tanis) site, northeastern Nile Delta, Egypt. Archaeological Prospection, 28(2), 251-267. https://doi.org/10.1002/arp.1810
- Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82. https://doi.org/10.1016/j.earscirev.2014.04.002