مروری نظام مند بر کاربردهای الگوریتم فراابتکاری عقاب ماهیگیر در سیستم های توزیع شده
محورهای موضوعی : فناوری های نوین در سیستم های توزیع شده و محاسبات الگوریتمیصابر پهلوان 1 , علی اکبر نقابی 2 *
1 - گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 - گروه مهندسی کامپیوتر و فناوری اطلاعات، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
کلید واژه: الگوریتم عقاب ماهیگیر, اینترنت اشیا, الگوریتم های فراابتکاری, سیستم های توزیع شده, بهینهسازی,
چکیده مقاله :
الگوریتم فراابتکاری عقاب ماهیگیر بهعنوان یکی از روشهای نوظهور بهینهسازی، طی سالهای اخیر توجه گستردهای در حوزه سیستمهای توزیعشده به خود جلب کرده است. این الگوریتم با الهام از رفتار شکار عقاب ماهیگیر، توانایی چشمگیری در ایجاد توازن میان جستجوی سراسری و محلی دارد و در نتیجه میتواند مسائل پیچیده و چندمعیاره را بهطور مؤثر حل کند. در دهه اخیر، سیستمهای توزیعشده به ستون فقرات بسیاری از فناوریهای نوین تبدیل شدهاند. این سیستمها با فراهمکردن بستری برای همکاری اجزای پراکنده در جغرافیاهای متفاوت، امکان پردازش و مدیریت دادهها را در مقیاس جهانی فراهم میکنند. این مقاله مروری نظاممند از پژوهشهای انجامشده در حوزه کاربرد الگوریتم فراابتکاری عقاب ماهیگیر در سیستم های توزیع شده انجام شده است. ۱۹ مقاله منتخب در حوزههایی مانند اینترنت اشیا، رایانش ابری و مه، شبکههای برق هوشمند، ریزشبکهها، شبکههای حسگر بیسیم و سامانههای سلامت هوشمند مورد بررسی قرار گرفته است. یافتهها نشان میدهد که الگوریتم فراابتکاری عقاب ماهیگیر قادر است مصرف انرژی را کاهش دهد، تخصیص منابع را بهبود بخشد، امنیت دادهها را ارتقا دهد و کارایی و پایداری سیستمهای توزیعشده را افزایش دهد. در عین حال، چالشهایی نظیر پیچیدگی محاسباتی، وابستگی به پارامترهای اولیه و کمبود آزمونهای میدانی در محیطهای واقعی همچنان باقی است. نتایج این مرور، چشماندازهایی برای توسعه نسخههای بهبودیافته الگوریتم و کاربرد آن در محیطهای عملیاتی آینده پیشنهاد میکند.
The Osprey Optimization Algorithm (OOA), an emerging metaheuristic method, has recently gained significant attention in the field of distributed systems. Inspired by the predatory behavior of ospreys, the algorithm exhibits a strong capability to balance global exploration with local exploitation, thereby offering effective solutions for complex and multi-objective optimization problems. Over the past decade, distributed systems have become the backbone of modern technologies, enabling seamless cooperation among geographically dispersed components and supporting large-scale data processing and management. This article studies research on OOA applications in distributed systems. Nineteen selected studies were analyzed, covering domains such as the Internet of Things, cloud and fog computing, smart grids, microgrids, wireless sensor networks, and smart healthcare systems. The findings reveal that OOA can significantly reduce energy consumption, improve resource allocation, enhance data security, and increase the efficiency and resilience of distributed systems. Nevertheless, challenges remain, including computational complexity, sensitivity to parameter tuning, and the lack of real-world experimental validations. The results of this review highlight promising avenues for developing enhanced variants of the algorithm and extending its deployment in practical operational environments.
[1] Abdullayev, I., Kosorukova, I., Klochko, E., Cho, W., & Joshi, G. (2024). Modeling of extended osprey optimization algorithm with Bayesian neural network: an application on Fintech to predict financial crisis. AIMS Math 9 (7): 17555–17577. In.
[2] Alahmari, S. Privacy-Aware Federated Learning Framework for Securing Iot Devices Using Chameleon Swarm Algorithm with Self Attentive Variational Autoencoder Model. Available at SSRN 4966315.
[3] Chintapalli, S. S. N., Singh, S. P., Frnda, J., Divakarachari, P. B., Sarraju, V. L., & Falkowski-Gilski, P. (2024). OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems. Heliyon, 10(8).
[4] Guo, G., Liu, P., & Zheng, Y. (2024). Early energy performance analysis of smart buildings by consolidated artificial neural network paradigms. Heliyon, 10(4).
[5] Guo, Z., Yin, Z., Lyu, Y., Wang, Y., Chen, S., Li, Y., Zhang, W., & Gao, P. (2024). Research on Indoor Environment Prediction of Pig House Based on OTDBO–TCN–GRU Algorithm. Animals, 14(6), 863.
[6] MidhulaSri, J., & Ravikumar, C. (2024). Offloading computational tasks for MIMO-NOMA in mobile edge computing utilizing a hybrid Pufferfish and Osprey optimization algorithm. Ain Shams Engineering Journal, 103136.
[7] Prasad, A., Gurung, S., & Sharma, K. (2024). Enhancement of Buffer Management and Data Transmission in Delay Tolerant Network Using Secant Osprey Optimization. International Journal of Communication Networks and Information Security, 16(1), 241-257.
[8] Somula, R., Cho, Y., & Mohanta, B. K. (2024). SWARAM: osprey optimization algorithm-based energy-efficient cluster head selection for wireless sensor network-based internet of things. Sensors, 24(2)..
[9] Waghmode, S., & Patil, B. M. (2024). Adaptive load balancing in distributed cloud environment: Hybrid Kookaburra-Osprey optimization algorithm. Intelligent Decision Technologies, 18(3), 1933-1954.
[10] Zuo, F., Zhang, D., Li, L., He, Q., & Deng, J. (2024). GSOOA-1DDRSN: Network traffic anomaly detection based on deep residual shrinkage networks. Heliyon.
[11] Prasad, A., Gurung, S., & Sharma, K. (2024). Enhancement of buffer management and data transmission in delay tolerant network using secant osprey optimization. International Journal of Communication Networks and Information Security, 16(1), 15-25.
[12] Dehghani, M., & Trojovský, P. (2023). Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Frontiers in Mechanical Engineering, 8, 1126450.
[13] Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A. W. (2021). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009-2019). IEEE Access, 9, 26766–26791.