تحلیل و مقایسه تالابهای مصنوعی برای گیاهپالایی فاضلاب
محورهای موضوعی : زبان اصلی مجله انگلیسی می باشد! ( ترجمه عنوان: رهیافت های نوین در محیط زیست و اکولوژی کاربردی)مسعود نوشادی 1 * , زهرا اسلامی 2 , سعید عوض پور 3
1 - رئیس بخش مهندسی آب دانشگاه شیراز
2 - بخش مهندسی آب، دانشگاه شیراز، شیراز، ایران
3 - بخش مهندسی آب، دانشگاه شیراز، شیراز، ایران
کلید واژه: تالابهای مصنوعی, راهکارهای سبز, گیاهپالایی, کنترل آلودگی, تصفیه فاضلاب,
چکیده مقاله :
تالابهای مصنوعی، سیستمهای مهندسیشدهای هستند که عملکردهای تالابهای طبیعی را برای تصفیه پایدار فاضلاب از طریق گیاهپالایی تکرار میکنند. این بررسی، تجزیه و تحلیل جامعی از انواع تالابهای مصنوعی، از جمله جریان آزاد سطحی آب، جریان افقی و عمودی زیرسطحی، سیستمهای ترکیبی و تالابهای شناور تصفیه، با برجسته کردن طرحهای ساختاری، رژیمهای جریان و گونههای گیاهی مورد استفاده در آنها ارائه میدهد. مکانیسمهای گیاهپالایی، مانند استخراج گیاهی و تجزیه گیاهی، به تفصیل بررسی شدهاند. ارزیابیهای عملکرد نشان میدهد که تالابهای مصنوعی به طور مؤثر مواد مغذی، فلزات سنگین، عوامل بیماریزا و آلایندههای نوظهور را حذف میکنند و راندمان حذف آنها تحت تأثیر انتخاب گیاه، زمان ماند هیدرولیکی و شرایط عملیاتی قرار دارد. کاربردهای مختلف در تصفیه فاضلاب شهری، صنعتی و کشاورزی بررسی شده و با مطالعات موردی در سطح بین المللی مطابقت داده شده است. چالشهایی مانند نیاز به زمین، تغییرپذیری فصلی و محدودیتها در حذف آلایندههای نوظهور در کنار دیدگاههای نوآوری، از جمله اصلاحات بیوچار، پیکربندیهای ترکیبی و تشدید سیستم، مورد بحث قرار گرفتهاند. تالابهای مصنوعی یک جایگزین مقاوم، کمانرژی و از نظر اکولوژیکی مفید برای تصفیه فاضلاب ارائه میدهند که پتانسیل قابل توجهی در پیشبرد استراتژیهای مدیریت یکپارچه و چرخشی آب دارد.
Constructed wetlands (CWs) are engineered systems that replicate natural wetland functions to sustainably treat wastewater through phytoremediation. This review provides a comprehensive analysis of CW types, including free water surface flow, horizontal and vertical subsurface flow, hybrid systems, and floating treatment wetlands, highlighting their structural designs, flow regimes, and plant species used. The mechanisms of phytoremediation, such as phytoextraction and phytodegradation are examined in detail. Performance evaluations reveal that CWs effectively remove nutrients, heavy metals, pathogens, and emerging contaminants, with removal efficiencies influenced by plant selection, hydraulic retention time, and operational conditions. Applications across municipal, industrial, and agricultural wastewater treatment are reviewed, supported by global case studies. Challenges such as land requirements, seasonal variability, and limitations in emerging pollutant removal are discussed alongside perspectives for innovation, including biochar amendments, hybrid configurations, and system intensification. CWs offer a resilient, low-energy, and ecologically beneficial alternative for wastewater treatment, with significant potential in advancing integrated and circular water management strategies.
[1] H. Brix, "Do macrophytes play a role in constructed treatment wetlands?," Water science and technology, vol. 35, no. 5, pp. 11-17, 1997. https://doi.org/10.1016/S0273-1223(97)00047-4
[2] R. Kadlec and S. Wallace, "Treatment wetlands. CRC Press Taylor & Francis Group," Boca Raton, London, New York, pp. 267-347, 2009.
[3] J. Vymazal, "Constructed wetlands for wastewater treatment: five decades of experience," Environmental science & technology, vol. 45, no. 1, pp. 61-69, 2011. https://doi.org/10.1021/es101403q
[4] N. Fonder and T. Headley, "The taxonomy of treatment wetlands: a proposed classification and nomenclature system," Ecological Engineering, vol. 51, pp. 203-211, 2013. https://doi.org/10.1016/j.ecoleng.2012.12.011
[5] D. Q. Zhang, K. Jinadasa, R. M. Gersberg, Y. Liu, W. J. Ng, and S. K. Tan, "Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013)," Journal of environmental management, vol. 141, pp. 116-131, 2014. https://doi.org/10.1016/j.jenvman.2014.03.015
[6] S. Wu et al., "Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance," Environmental Pollution, vol. 201, pp. 107-120, 2015. https://doi.org/10.1016/j.envpol.2015.03.006
[7] C. S. Akratos and V. A. Tsihrintzis, "Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands," Ecological engineering, vol. 29, no. 2, pp. 173-191, 2007. https://doi.org/10.1016/j.ecoleng.2006.06.013
[8] H. Ilyas and I. Masih, "The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review," Journal of environmental management, vol. 198, pp. 372-383, 2017. https://doi.org/10.1016/j.jenvman.2017.04.098
[9] C. Tanner, "Plants as ecosystem engineers in subsurface-flow treatment wetlands," Water Science and Technology, vol. 44, no. 11-12, pp. 9-17, 2001. https://doi.org/10.2166/wst.2001.0804
[10] J. Vymazal and L. Kröpfelová, Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, 2008.
[11] D. P. Rousseau, P. A. Vanrolleghem, and N. De Pauw, "Constructed wetlands in Flanders: a performance analysis," Ecological Engineering, vol. 23, no. 3, pp. 151-163, 2004. https://doi.org/10.1016/j.ecoleng.2004.08.001
[12] G. Dotro et al., Treatment wetlands. IWA publishing, 2017.
[13] M. M. Waly, T. Ahmed, Z. Abunada, S. B. Mickovski, and C. Thomson, "Constructed wetland for sustainable and low-cost wastewater treatment," Land, vol. 11, no. 9, p. 1388, 2022. https://doi.org/10.3390/land11091388
[14] H. Ali, E. Khan, and M. A. Sajad, "Phytoremediation of heavy metals—concepts and applications," Chemosphere, vol. 91, no. 7, pp. 869-881, 2013. https://doi.org/10.1016/j.chemosphere.2013.01.075
[15] J. Vymazal, "Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment," Ecological engineering, vol. 25, no. 5, pp. 478-490, 2005. https://doi.org/10.1016/j.ecoleng.2005.07.010
[16] C. Prochaska, A. Zouboulis, and K. Eskridge, "Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage," Ecological engineering, vol. 31, no. 1, pp. 57-66, 2007. https://doi.org/10.1016/j.ecoleng.2007.05.007
[17] H. Zhou et al., "Antibiotic fate in an artificial‐constructed urban river planted with the algae Microcystis aeruginosa and emergent hydrophyte," Water Environment Research, vol. 94, no. 1, p. e1670, 2022. https://doi.org/10.1002/wer.1670
[18] H. Wu et al., "Constructed wetlands for pollution control," Nature reviews earth & environment, vol. 4, no. 4, pp. 218-234, 2023. https://doi.org/10.1038/s43017-023-00395-z
[19] T. Headley and C. C. Tanner, "Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology," Critical Reviews in Environmental Science and Technology, vol. 42, no. 21, pp. 2261-2310, 2012. https://doi.org/10.1080/10643389.2011.574108
[20] G. Sun, Y. Zhao, S. Allen, and D. Cooper, "Generating “tide” in pilot‐scale constructed wetlands to enhance agricultural wastewater treatment," Engineering in Life Sciences, vol. 6, no. 6, pp. 560-565, 2006. https://doi.org/10.1002/elsc.200620156
[21] T. Tuttolomondo, M. Licata, C. Leto, R. Leone, and S. La Bella, "Effect of plant species on water balance in a pilot-scale horizontal subsurface flow constructed wetland planted with Arundo donax L. and Cyperus alternifolius L.–Two-year tests in a Mediterranean environment in the West of Sicily (Italy)," Ecological Engineering, vol. 74, pp. 79-92, 2015. https://doi.org/10.1016/j.ecoleng.2014.10.020
[22] M. Licata, M. C. Gennaro, T. Tuttolomondo, C. Leto, and S. La Bella, "Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater–A set of experimental studies in Sicily (Italy)," PloS one, vol. 14, no. 7, p. e0219445, 2019. https://doi.org/10.1371/journal.pone.0219445
[23] G. Lino, P. Espigul, S. Nogués, and X. Serrat, "Arundo donax L. growth potential under different abiotic stress," Heliyon, vol. 9, no. 5, 2023. https://doi.org/10.1016/j.heliyon.2023.e15521
[24] L. N. Biruk, M. Tomasella, F. Petruzzellis, and A. Nardini, "Better safe than sorry: the unexpected drought tolerance of a wetland plant (Cyperus alternifolius L.)," Physiologia Plantarum, vol. 177, no. 1, p. e70027, 2025. https://doi.org/10.1111/ppl.70027
[25] M. Kaifiyan, F. A. Khan, and M. I. Naikoo, "Phytoremediation of arsenic by phragmites australis, colocasia esculenta and canna indica using a novel semi-hydroponics system," 2022. https://doi.org/10.5958/0974-4517.2022.00050.7
[26] K. R. Reddy and E. M. D'angelo, "Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands," Water Science and Technology, vol. 35, no. 5, pp. 1-10, 1997. https://doi.org/10.1016/S0273-1223(97)00046-2
[27] S. Wallace, G. Parkin, and C. Cross, "Cold climate wetlands: design and performance," Water Science and Technology, vol. 44, no. 11-12, pp. 259-265, 2001. https://doi.org/10.2166/wst.2001.0838
[28] L. T. Danh, P. Truong, R. Mammucari, T. Tran, and N. Foster, "Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes," International journal of phytoremediation, vol. 11, no. 8, pp. 664-691, 2009. https://doi.org/10.1080/15226510902787302
[29] M. Truu, J. Juhanson, and J. Truu, "Microbial biomass, activity and community composition in constructed wetlands," Science of the total environment, vol. 407, no. 13, pp. 3958-3971, 2009. https://doi.org/10.1016/j.scitotenv.2008.11.036
[30] C. S. Calheiros, A. O. Rangel, and P. M. Castro, "Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis," Bioresource technology, vol. 100, no. 13, pp. 3205-3213, 2009. https://doi.org/10.1016/j.biortech.2009.02.017
[31] V. Matamoros and J. M. Bayona, "Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands," Environmental science & technology, vol. 40, no. 18, pp. 5811-5816, 2006. https://doi.org/10.1021/es0607741
[32] L.-L. Zhuang et al., "The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment," Journal of Water Process Engineering, vol. 45, p. 102522, 2022. https://doi.org/10.1016/j.jwpe.2021.102522
[33] M. Castaño-Trias et al., "Evaluation of pharmaceutical removal through a full-scale UASB-CW system in a water-scarce Mediterranean region," Environmental Science: Water Research & Technology, 2025. https://doi.org/10.1039/D4EW01085J
[34] J. Vymazal, "Plants used in constructed wetlands with horizontal subsurface flow: a review," Hydrobiologia, vol. 674, no. 1, pp. 133-156, 2011. https://doi.org/10.1007/s10750-011-0738-9
[35] A. I. Stefanakis, "Constructed wetlands for sustainable wastewater treatment in hot and arid climates: opportunities, challenges and case studies in the Middle East," Water, vol. 12, no. 6, p. 1665, 2020. https://doi.org/10.3390/w12061665
[36] J. Vymazal, "Constructed wetlands for wastewater treatment," Water, vol. 2, no. 3, pp. 530-549, 2010. https://doi.org/10.3390/w2030530
[37] K. E. Borne, E. A. Fassman-Beck, R. J. Winston, W. F. Hunt, and C. C. Tanner, "Implementation and maintenance of floating treatment wetlands for urban stormwater management," Journal of Environmental Engineering, vol. 141, no. 11, p. 04015030, 2015. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000959
[38] G. S. Colares et al., "Floating treatment wetlands: A review and bibliometric analysis," Science of the Total Environment, vol. 714, p. 136776, 2020. https://doi.org/10.1016/j.scitotenv.2020.136776
[39] N. Fonder and T. Headley, "Systematic classification, nomenclature and reporting for constructed treatment wetlands," in Water and nutrient management in natural and constructed wetlands: Springer, 2010, pp. 191-219. https://doi.org/10.1007/978-90-481-9585-5_15
[40] M. Hdidou et al., "Potential use of constructed wetland systems for rural sanitation and wastewater reuse in agriculture in the moroccan context," Energies, vol. 15, no. 1, p. 156, 2021. https://doi.org/10.3390/en15010156
[41] R. H. Kadlec and K. Reddy, "Temperature effects in treatment wetlands," Water environment research, vol. 73, no. 5, pp. 543-557, 2001. https://doi.org/10.2175/106143001X139614
[42] A. Albalawneh, T.-K. Chang, C.-S. Chou, and S. Naoum, "Efficiency of a horizontal sub-surface flow constructed wetland treatment system in an arid area," Water, vol. 8, no. 2, p. 51, 2016. https://doi.org/10.3390/w8020051
[43] A. M. Ahmed, "Comparative Analysis of Vertical and Horizontal Subsurface Flow Constructed Wetlands for Eutrophication Mitigation," Al-Bahir Journal for Engineering and Pure Sciences, vol. 6, no. 2, p. 2, 2025. https://doi.org/10.55810/2313-0083.1092
[44] R. Shruthi and G. Shivashankara, "Investigation on the performance evaluation of vertical subsurface flow constructed wetland for the treatment of rural wastewater," Water science and Technology, vol. 85, no. 1, pp. 16-26, 2022. https://doi.org/10.2166/wst.2021.507
[45] J. Vymazal, "Removal of nutrients in various types of constructed wetlands," Science of the total environment, vol. 380, no. 1-3, pp. 48-65, 2007. https://doi.org/10.1016/j.scitotenv.2006.09.014
[46] A. Rani, M. Chauhan, P. K. Sharma, M. Kumari, D. Mitra, and S. Joshi, "Microbiological dimensions and functions in constructed wetlands: A review," Current Research in Microbial Sciences, vol. 7, p. 100311, 2024. https://doi.org/10.1016/j.crmicr.2024.100311
[47] P. Bilgaiyan, N. Shivhare, and N. G. Rao, "Phytoremediation of wastewater through implemented wetland–a review," in E3S Web of Conferences, 2023, vol. 405, p. 04026: EDP Sciences. https://doi.org/10.1051/e3sconf/202340504026
[48] D. Farruggia, M. Licata, C. Leto, G. Urso, F. Salamone, and C. S. C. Calheiros, "Long-term investigation of pollutant removal efficiency in two constructed wetlands for wastewater treatment and reuse in urban areas," Frontiers in Environmental Science, vol. 13, p. 1606056, 2025. https://doi.org/10.3389/fenvs.2025.1606056
[49] S. Wu, P. Kuschk, H. Brix, J. Vymazal, and R. Dong, "Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review," Water research, vol. 57, pp. 40-55, 2014. https://doi.org/10.1016/j.watres.2014.03.020
[50] Z.-J. Chen, Y.-H. Tian, Y. Zhang, B.-R. Song, H.-C. Li, and Z.-H. Chen, "Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands," Ecological Engineering, vol. 92, pp. 243-250, 2016. https://doi.org/10.1016/j.ecoleng.2016.04.001
[51] J. Vymazal, "Constructed wetlands for treatment of industrial wastewaters: A review," Ecological engineering, vol. 73, pp. 724-751, 2014. https://doi.org/10.1016/j.ecoleng.2014.09.034
[52] P. Seuntjens, B. Nowack, and R. Schulin, "Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands," Plant and Soil, vol. 265, no. 1, pp. 61-73, 2004. https://doi.org/10.1007/s11104-005-8470-8
[53] A. Malik, "Metal bioremediation through growing cells," Environment international, vol. 30, no. 2, pp. 261-278, 2004. https://doi.org/10.1016/j.envint.2003.08.001
[54] B. K. Yadav, M. A. Siebel, and J. J. van Bruggen, "Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula," CLEAN–Soil, Air, Water, vol. 39, no. 5, pp. 467-474, 2011. https://doi.org/10.1002/clen.201000385
[55] T. L. Messer et al., "Constructed wetlands for water quality improvement: A synthesis on nutrient reduction from agricultural effluents," Transactions of the ASABE, vol. 64, no. 2, pp. 625-639, 2021. https://doi.org/10.13031/trans.13976
[56] J. Vymazal and T. Březinová, "Long term treatment performance of constructed wetlands for wastewater treatment in mountain areas: four case studies from the Czech Republic," Ecological Engineering, vol. 71, pp. 578-583, 2014. https://doi.org/10.1016/j.ecoleng.2014.07.075
[57] M. Šereš et al., "Evaluation of hybrid constructed wetland performance and reuse of treated wastewater in agricultural irrigation," Water, vol. 13, no. 9, p. 1165, 2021. https://doi.org/10.3390/w13091165
[58] L. Tian et al., "Synergistic improvement of nitrogen and phosphorus removal in constructed wetlands by the addition of solid iron substrates and ferrous irons," Fundamental Research, vol. 3, no. 6, pp. 890-897, 2023. https://doi.org/10.1016/j.fmre.2022.10.012
[59] C. Xu, Y. Feng, H. Li, Y. Li, Y. Yao, and J. Wang, "Constructed wetlands for mariculture wastewater treatment: From systematic review to improvement measures and insights," Desalination, vol. 579, p. 117505, 2024. https://doi.org/10.1016/j.desal.2024.117505
[60] S. Khan, I. Ahmad, M. T. Shah, S. Rehman, and A. Khaliq, "Use of constructed wetland for the removal of heavy metals from industrial wastewater," Journal of environmental management, vol. 90, no. 11, pp. 3451-3457, 2009. https://doi.org/10.1016/j.jenvman.2009.05.026
[61] A. Batool, "Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan," Environmental Science and Pollution Research, vol. 26, no. 30, pp. 31508-31521, 2019. https://doi.org/10.1007/s11356-019-06211-w
[62] M. Barya, D. Gupta, R. Shukla, T. Thakur, and V. Mishra, "Phytoremediation of heavy metals from mixed domestic sewage through vertical-flow constructed wetland planted with Canna Indica and Acorus Calamus," Curr. World Environ, vol. 15, pp. 430-440, 2020. http://dx.doi.org/10.12944/CWE.15.3.06
[63] S. Irshad et al., "Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate," Environmental Pollution, vol. 346, p. 123597, 2024. https://doi.org/10.1016/j.envpol.2024.123597
[64] E. Bianchi et al., "Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent," Environmental Science and Pollution Research, vol. 28, no. 9, pp. 11444-11453, 2021. https://doi.org/10.1007/s11356-020-11291-0
[65] Y. Tu, P. Chiang, J. Yang, S. Chen, and C. Kao, "Application of a constructed wetland system for polluted stream remediation," Journal of Hydrology, vol. 510, pp. 70-78, 2014. https://doi.org/10.1016/j.jhydrol.2013.12.015
[66] A. S. Wolff, "Characterizing the beneficial uses of the Arcata Marsh constructed wetland treatment system and wildlife sanctuary," 2024. https://digitalcommons.humboldt.edu/etd/793
[67] H. Ilyas, I. Masih, and E. D. van Hullebusch, "Pharmaceuticals' removal by constructed wetlands: a critical evaluation and meta-analysis on performance, risk reduction, and role of physicochemical properties on removal mechanisms," Journal of Water and Health, vol. 18, no. 3, pp. 253-291, 2020. https://doi.org/10.2166/wh.2020.213
[68] S. Christofilopoulos, A. Kaliakatsos, K. Triantafyllou, I. Gounaki, D. Venieri, and N. Kalogerakis, "Evaluation of a constructed wetland for wastewater treatment: Addressing emerging organic contaminants and antibiotic resistant bacteria," New biotechnology, vol. 52, pp. 94-103, 2019. https://doi.org/10.1016/j.nbt.2019.05.006
[69] A. F. S. R. d. Melo, J. F. d. Oliveira, F. R. L. Fia, R. Fia, M. P. d. Matos, and A. L. Sanson, "Microcontaminants removal in constructed wetlands with different baffle arrangements and cultivated with pennisetum setaceum," Water, Air, & Soil Pollution, vol. 233, no. 8, p. 322, 2022. https://doi.org/10.1007/s11270-022-05822-3
[70] S. Dias, A. P. Mucha, R. Duarte Crespo, P. Rodrigues, and C. M. R. Almeida, "Livestock wastewater treatment in constructed wetlands for agriculture reuse," International journal of environmental research and public health, vol. 17, no. 22, p. 8592, 2020. https://doi.org/10.3390/ijerph17228592
[71] M. Tahsin Islam, I. Hossain, A. R. Mullick, and E. Haque, "Nitrogen removal by floating constructed wetland: Decontamination of the Buriganga River," Environmental Health Engineering and Management Journal, vol. 7, no. 3, pp. 203-208, 2020. https://doi.org/10.34172/EHEM.2020.23
[72] X. Nan, S. Lavrnić, G. Mancuso, and A. Toscano, "Effects of design and operational conditions on the performance of constructed wetlands for agricultural pollution control–critical review," Water, Air, & Soil Pollution, vol. 234, no. 7, p. 434, 2023. https://doi.org/10.1007/s11270-023-06380-y
[73] C.-Y. Hsu, G.-E. Yan, K.-C. Pan, and K.-C. Lee, "Constructed wetlands as a landscape management practice for nutrient removal from agricultural runoff—a local practice case on the east coast of Taiwan," Water, vol. 13, no. 21, p. 2973, 2021. https://doi.org/10.3390/w13212973
[74] D. Istenič, I. Bodík, M. Merisaar, M. Gajewska, M. Šereš, and T. Griessler Bulc, "Challenges and perspectives of nature-based wastewater treatment and reuse in rural areas of central and eastern Europe," Sustainability, vol. 15, no. 10, p. 8145, 2023. https://doi.org/10.3390/su15108145
[75] G. B. Chuma et al., "Effectiveness of wetlands as reservoirs for integrated water resource management in the Ruzizi plain based on water evaluation and planning (WEAP) approach for a climate-resilient future in eastern DR Congo," Scientific Reports, vol. 14, no. 1, p. 21577, 2024. https://doi.org/10.1038/s41598-024-72021-x
[76] S. Dai et al., "Study on physical clogging process and practical application of horizontal subsurface flow constructed wetland," Scientific Reports, vol. 15, no. 1, p. 523, 2025. https://doi.org/10.1038/s41598-024-84159-9
[77] Y. Zhang, Y. Dong, L. Qin, X. Yue, A. Zhou, and H. Wu, "Distinct roles of biochar and pyrite substrates in enhancing nutrient and heavy metals removal in intermittent-aerated constructed wetlands: Performances and mechanism," Environmental Research, vol. 258, p. 119393, 2024. https://doi.org/10.1016/j.envres.2024.119393
[78] Y. Tan, Y. Huong, F. Tang, and A. Saptoro, "A review of sewage sludge dewatering and stabilisation in reed bed system: towards the process-based modelling," International Journal of Environmental Science and Technology, vol. 21, no. 1, pp. 997-1020, 2024. https://doi.org/10.1007/s13762-023-05063-9
[79] S. Liu, Y. Zhang, X. Feng, and S.-H. Pyo, "Current problems and countermeasures of constructed wetland for wastewater treatment: A review," Journal of Water Process Engineering, vol. 57, p. 104569, 2024. https://doi.org/10.1016/j.jwpe.2023.104569
[80] M. Salinas-Toledano, T. Gómez-Borraz, M. Belmont, and F. Garcia-Becerra, "Optimizing constructed wetland design and operation for dual benefits: A critical review to enhance micropollutant removal while mitigating greenhouse gas emissions," Environmental Research, vol. 263, p. 120144, 2024. https://doi.org/10.1016/j.envres.2024.120144