بررسی شیوع ژن هاي مقاومت در لیستریا مونوسیتوژنز جدا شده از نمونه هاي غذایی
محورهای موضوعی : میکروبیولوژی غذاییمحمدرضا صائبی 1 , فهیمه نوربخش 2 , حسین خدابنده شهرکی 3
1 - 1- دانشجوی دکتری بهداشت مواد غذایی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی، واحد شهرکرد، شهرکرد، ایران
2 - گروه میکروب شناسی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.
3 -
کلید واژه: لیستریا مونوسیتوژنز, مواد غذایی, واکنش زنجیره اي پلیمریزاسیون, لیستریوزیس, مقاومت آنتی بیوتیکی,
چکیده مقاله :
باکتری لیستریا مونوسیتوژنز (L.monocytogenes) گونهای از باکتریهای بیماریزاست که موجب عفونت لیستریوزیس میگردد. این باکتری بیهوازی اختیاری است و قادر به زنده ماندن در بود و نبود اکسیژن است . مصرف لبنیات، گوشت و سبزیجات آلوده مهم ترین منبع انتقال آلودگی بحساب می آید. مطالعات محدودی از میزان مقاومت آنتی بیوتیکی گونه های لیستریا مونوسیتوژنز وجود دارد. لذا این مطالعه با هدف ارزیابی فراوانی و میزان مقاومت در نمونه های مورد ارزیابی دارد. در این مطالعه مقطعی توصیفی 150 نمونه مختلف به صورت تصادفی از مناطق مختلف استان اصفهان جمع آوری شد. نمونه ها شامل 60 نمونه گوشت، 40 نمونه از فراورده های لبنی (شامل شیر، پنیر و...) و 50 نمونه سبزیجات (شامل تره، شاهی، تربچه و ریحان) بودند. ســروتایپینگ سویه هـاي جـدا شـده بـا اسـتفاده از آنتـی سـرم هـاي تجـار ي O و H لیسـتریا مونوسـیتوژنز و مطابق با دسـتورالعمل کارخانـه سـازنده بـا روش آگلوتیناسـیون لامـی و ارزیابی مقاومت آنتی بیوتیکی انجـام شد. از روش PCR استاندارد به منظور تشخیص ژنهاي ermA, ermB, strA, tetS, tetA و ermC در سویه ها استفاده شد. بـر اسـاس واکـنش سـرولوژیکی، آنتی ژن های سوماتیک O و فلاژلی H لیستریا مونوسیتوژنز با آنتی سرم های متناظر، اغلب گونه های لیستریا (70درصد) متعلق به سروتیپ 1/2a و مابقی از سروتیپ 1/2b (19درصد) و 4b (11درصد) بودند. نتایج حاصل از بررسی میکروبی نشان داد که بیشترین مقاومت دارویی مربوط به استرپتومایسین (89درصد) و کمترین میزان مقاومت دارویی در ایزوله های مورد ارزیابی مرتبط با آمپی سیلین (14درصد) و کلرامفنیکل (13درصد) بود. بیشترین ژن هاي مورد ارزیابی مربوط به ژن strA و ژن ermA بترتیب با فراوانی 8/79درصد و 4/65درصد بود. شیوع سایر ژن هاي لیستریا مونوسیتوژنز در مورد ارزیابی در این مطالعه شامل tetA (17درصد)،tetS (5/2درصد)، ermB (7/10درصد) و ermC (1/2درصد) بود.
Listeria monocytogenes (L. monocytogenes) is a type of pathogenic bacteria that causes listeriosis infection. This facultative anaerobic bacterium is able to survive in the presence and absence of oxygen and is the cause of a wide range of diseases in humans and animals. Consumption of contaminated dairy products, meat and vegetables is the most important source of contamination. There are limited studies of the antibiotic resistance of Listeria monocytogenes species. Therefore, this study aims to evaluate the frequency and level of resistance in the evaluated samples. In this descriptive cross-sectional study, 150 different samples were randomly collected from different regions of Isfahan province. The samples included 60 samples of meat, 40 samples of dairy products (including milk, cheese, etc.) and 50 samples of vegetables (including leek, watercress, radish and basil). The serotyping of the isolated strains was done using the commercial O and H antisera of Listeria monocytogenes and according to the manufacturer's instructions, using slide agglutination method and antibiotic resistance evaluation. Standard PCR method was used to detect ermA, ermB, strA, tetS, tetA and ermC genes in the strains. Based on the serological reaction, somatic antigens O and flagella H of Listeria monocytogenes with the corresponding antisera, most Listeria species (70%) belong to serotype 1.2a and the rest from serotype 1.2b (19%) and 4b (11 %) They were. The results of the microbial investigation showed that the highest drug resistance was related to streptomycin (89%) and the lowest drug resistance in the evaluated isolates was related to ampicillin (14%) and chloramphenicol (13%). The most evaluated genes were related to strA gene and ermA gene, with frequencies of 79.8% and 65.4%, respectively. The prevalence of other Listeria monocytogenes genes evaluated in this study included tetA (17%), tetS (2.5%), ermB (10.7%) and ermC (2.1%).
1. Kathariou, S., Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of food protection, 2002. 65(11): p. 1811-1829.
2. Jordan, K. and O. McAuliffe, Listeria monocytogenes in foods. Advances in food and nutrition research, 2018. 86: p. 181-213.
3. Gombas, D.E., et al., Survey of Listeria monocytogenes in ready-to-eat foods. Journal of food protection, 2003. 66(4): p. 559-569.
4. Wiedmann, M., Molecular subtyping methods for Listeria monocytogenes. Journal of AOAC International, 2002. 85(2): p. 524-532.
5. Graves, L.M., B. Swaminathan, and S.B. Hunter, Subtyping listeria monocytogenes. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 2007. 161: p. 283.
6. Ooi, S.T. and B. Lorber, Gastroenteritis due to Listeria monocytogenes. Clinical infectious diseases, 2005. 40(9): p. 1327-1332.
7. Pagliano, P., et al., Listeria monocytogenes meningitis in the elderly: epidemiological, clinical and therapeutic findings. Infez Med, 2016. 24(2): p. 105-111.
8. Ramaswamy, V., et al., Listeria-review of epidemiology and pathogenesis. Journal of Microbiology Immunology and Infection, 2007. 40(1): p. 4.
9. Siegman-Igra, Y., et al., Listeria monocytogenes infection in Israel and review of cases worldwide. Emerging infectious diseases, 2002. 8(3): p. 305.
10. درهکردی, et al., تشخیص عفونتهای باکتریایی؛ روش های سنتی و مولکولی: یک مرور سنتی. مجله علمی دانشگاه علوم پزشکی رفسنجان, 2018. 17(9): p. 865-880.
11. Wing, E.J. and S.H. Gregory, Listeria monocytogenes: clinical and experimental update. The Journal of infectious diseases, 2002. 185(Supplement_1): p. S18-S24.
12. Fenlon, D., J. Wilson, and W. Donachie, The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. Journal of Applied Microbiology, 1996. 81(6): p. 641-650.
13. Rouquette, C. and P. Berche, The pathogenesis of infection by Listeria monocytogenes. Microbiologia (Madrid, Spain), 1996. 12(2): p. 245-258.
14. Letchumanan, V., et al., A review on the characteristics, taxanomy and prevalence of Listeria monocytogenes. Progress In Microbes & Molecular Biology, 2018. 1(1).
15. Low, J. and W. Donachie, A review of Listeria monocytogenes and listeriosis. The Veterinary Journal, 1997. 153(1): p. 9-29.
16. شیوایی, et al., بررسی شیوع ژنهای مقاومت در لیستریا مونوسیتوژنز جدا شده از نمونههای غذایی و بالینی. فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران, 2019. 29(4): p. 322-328.
17. آقاخانی, ش., et al., شیوع گونههای لیستریا در شیر خام عرضه شده در سطح شهر اصفهان. مجله دانشکده پزشکی اصفهان, 2012. 30(204).
18. نسرين, ش.ف. and ج. احمد, ليستريوزيس (معرفي 2 مورد از بيمارستان حضرت رسول اكرم).
19. Hamon, M., H. Bierne, and P. Cossart, Listeria monocytogenes: a multifaceted model. Nature Reviews Microbiology, 2006. 4(6): p. 423-434.
20. Walsh, D., et al., Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. Journal of Applied Microbiology, 2001. 90(4): p. 517-522.
21. Yan, H., et al., Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005–2007. International journal of food microbiology, 2010. 144(2): p. 310-316.
22. Drevets, D.A. and M.S. Bronze, Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunology & Medical Microbiology, 2008. 53(2): p. 151-165.
23. Sleator, R.D., C.G. Gahan, and C. Hill, A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Applied and Environmental Microbiology, 2003. 69(1): p. 1-9.
24. Han, Y., Z. Sun, and W. Chen, Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules, 2019. 25(1): p. 33.
25. Edelson, B.T. and E.R. Unanue, Immunity to Listeria infection. Current opinion in immunology, 2000. 12(4): p. 425-431.
26. Pamer, E.G., Immune responses to Listeria monocytogenes. Nature Reviews Immunology, 2004. 4(10): p. 812-823.
27. Gasanov, U., D. Hughes, and P.M. Hansbro, Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS microbiology reviews, 2005. 29(5): p. 851-875.
28. Milillo, S.R., et al., A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Critical reviews in food science and nutrition, 2012. 52(8): p. 712-725.
29. Embarek, P.K.B., Presence, detection and growth of Listeria monocytogenes in seafoods: a review. International Journal of Food Microbiology, 1994. 23(1): p. 17-34.
30. Nightingale, K., et al., Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Applied and environmental microbiology, 2004. 70(8): p. 4458-4467.
31. Baquero, F., et al., Ecogenetics of antibiotic resistance in Listeria monocytogenes. Molecular microbiology, 2020. 113(3): p. 570-579.
32. Yu, T. and X. Jiang, Prevalence and characterization of Listeria monocytogenes isolated from retail food in Henan, China. Food Control, 2014. 37: p. 228-231.
33. Zhang, Y., et al., Characterization of Listeria monocytogenes isolated from retail foods. International Journal of Food Microbiology, 2007. 113(1): p. 47-53.
34. Mammina, C., et al., Characterization of Listeria monocytogenes isolates from human listeriosis cases in Italy. Journal of Clinical Microbiology, 2009. 47(9): p. 2925-2930.
35. Guerini, M.N., et al., Listeria prevalence and Listeria monocytogenes serovar diversity at cull cow and bull processing plants in the United States. Journal of Food Protection, 2007. 70(11): p. 2578-2582.
36. Jalali, M. and D. Abedi, Prevalence of Listeria species in food products in Isfahan, Iran. International journal of food microbiology, 2008. 122(3): p. 336-340.
37. Lambertz, S.T., et al., Prevalence and level of Listeria monocytogenes in ready-to-eat foods in Sweden 2010. International Journal of Food Microbiology, 2012. 160(1): p. 24-31.
38. Dallal, M., M. Zinjanab, and H. Rad, Identification and frequency of Listeria monocytogenes in vegetables and ready to eat salads of Tehran, Iran. Scientific Journal of Kurdistan University of Medical Sciences, 2015. 20(2).