Prediction of Heusler Alloys with Giant Magnetocaloric Effect using Machine-Learning
Subject Areas :Tasnim Gharaibeh 1 , Pnina Ari-Gur 2 , Elise de Doncker 3
1 - Western Michigan University, Kalamazoo, MI, U.S.
2 - Western Michigan University, Kalamazoo, MI, U.S.
3 - Western Michigan University, Kalamazoo, MI, U.S.
Keywords: Machine Learning, Giant Magnetoresistance, Heusler Alloys, LPBF, Word2Vec,
Abstract :
Heusler alloys are intermetallic that offer a unique and broad array of properties. These properties are both scientifically intriguing and valuable for a variety of beneficial practical applications. One of these applications is magnetic cooling, taking advantage of the giant magnetocaloric effect (GMCE) in some Heusler alloys. Since the late 1990s, numerous scientific papers were published, attempting to harness Heusler alloys for green refrigeration. Manufacturing the alloys by additive manufacturing further offers control and enables tuning of their properties by controlling their microstructure. Although the scientific literature contains extensive information on these alloys’ chemistry and performance, it is the massive volume of scientific papers that makes it difficult, if not impossible, to keep up to date with relevant discoveries. To enable predicting the composition of excellent performing giant magnetocaloric Heusler alloys, manufactured by laser powder bed fusion (LPBF), we employed artificial intelligence, specifically unsupervised learning in the current work. We trained an unsupervised learning model using word embedding and the Word2vec algorithm on different data sets in the literature to extract hidden knowledge, relations, and interactions based on words that appear in similar contexts in the text while often having similar meanings. Properties inherent to giant magnetocaloric materials were addressed in the model. The outcome was the prediction of Heusler alloys, manufactured by LPBF, with an excellent giant magnetocaloric effect.
[1] Heusler, F., Starck, W., and Haupt, E., 1903. Über die Synthese Ferromagnetischer Mangan Legierungen Verh. Verhandlungen der Deutschen Physikalischen Gesellschaft, 5, 219-223.
[2] Webster, P. J. 1969, Heusler alloys. Contemporary Physics. 10(6): 559-577.
[3] Heusler, F. 1904. Manganese Bronze and Synthesis of Magnetizable Alloys from Nonmagnetic Metals. Zeitschrift fur Angewandte Chemie. 17: 260-264
[4] Ari-Gur P., Madiligama A., Felner I., Tsindlekht M.I., Ren Y., Brown D.W., Shavrov V., Koledov V., Mashirov A., Kayani A., 2022. The Nature of the Metamagnetic Transition in Heusler Alloy Ni44.9Mn43In12.1 Studied for Magnetic Refrigeration Application. Materials Science and Engineering: B. 283: 115796.
[5] Jamer, M.E., Wang, Y.J., Stephen, G.M., McDonald, I.J., Grutter, A.J., Sterbinsky, G.E., Arena, D.A., Borchers, J.A., Kirby, B.J., Lewis, L.H. and Barbiellini, B. 2017. Compensated Ferrimagnetism in the Zero-moment Heusler alloy Mn3Al. Physical Review Applied. 7(6): p.064036.
[6] Wurmehl, S., Kandpal, H.C., Fecher, G.H., Felser, C., 2006, Valence Electron Rules for Prediction of Half-metallic Compensated-Ferrimagnetic Behaviour of Heusler Compounds with Complete Spin Polarization. Journal of Physics: Condensed Matter. 18: 6171-6181.
[7] Chen J., Xu, X., Li, H., Guo, T., Ding, B., Chen, P., Zhang, H., Xi, X. and Wang, W. 2021. Large Anomalous Hall Angle Accompanying the Sign Change of Anomalous Hall Conductance in the Topological half-Heusler Compound HoPtBi. Physical Review B. 103(14):144425.
[8] Górnicka K., Kuderowicz G., Winiarski M.J., Wiendlocha B. and Klimczuk T. 2021. Superconductivity in LiGa2Ir Heusler type Compound with VEC= 16. Scientific Reports. 11(1):1-6.
[9] Quinn, R.J. and Bos, J.W. 2021. Advances in half-Heusler Alloys for Thermoelectric Power Generation. Materials Advances. 2(19):6246-66.
[10] Sofi S.A. and Gupta, D.C. 2021. Current Research and Future Prospective of Cobalt‐based Heusler Alloys as Thermoelectric Materials: A Density Functional Approach, International Journal of Energy Research. 45(3):4652-68.
[11] Elphick, K., Frost W., Samiepour, M., Kubota, T., Takanashi, K., Sukegawa, H., Mitani S. and Hirohata A., 2021. Heusler alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Science and technology of advanced materials. 22(1):235-71.
[12] Hirohata, A. and Lloyd D.C., 2022. Heusler Alloys for Metal Spintronics. MRS Bulletin. 47: 593-599.
[13] Ishihara, K., Takenaka, T., Miao, Y., Mizukami, Y., Hashimoto, K., Yamashita, M., Konczykowski, M., Masuki, R., Hirayama, M., Nomoto, T. and Arita, R., 2021. Tuning the Parity Mixing of Singlet-Septet Pairing in a Half-Heusler Superconductor. Physical Review X.11(4):041048.
[14] Dutta P., Parhizgar F., Black-Schaffer A.M., 2021. Superconductivity in Spin-3/2 Systems: Symmetry Classification, Odd-frequency Pairs, and Bogoliubov Fermi surfaces. Physical Review Research; 3(3):033255.
[15] Sattigeri R.M., Jha P.K., 2021. Dimensional Engineering of a Topological Insulating Phase in Half-Heusler LiMgAs. Scientific reports;11(1):1-0.
[16] Singh A.K., Ramarao S.D., Peter S.C., 2020. Rare-earth based half-Heusler Topological Quantum Materials: A perspective. APL Materials; 8(6):060903.
[17] Planes A., Mañosa L., and Acet M. 2009. Magnetocaloric Effect and its Relation to Shape-memory Properties in Ferromagnetic Heusler alloys. Journal of Physics: Condensed Matter. 21(23): 233201
[18] Koshkid’ko Y.S., Dilmieva, E.T., Kamantsev, A.P., Cwik, J., Rogacki, K., Mashirov, A.V., Khovaylo, V.V., Mejia, C.S., Zagrebin, M.A., Sokolovskiy, V.V. and Buchelnikov, V.D. 2022. Magnetocaloric Effect and Magnetic Phase Diagram of Ni-Mn-Ga Heusler Alloy in Steady and Pulsed Magnetic Fields. Journal of Alloys and Compounds. 904:164051.
[19] Madiligama, A.S., Ari-Gur, P., Shavrov, V.G., Koledov, V.V., Calder, S., Mashirov, A.V., Kamantsev A.P., Dilmieva E.T., Gonzalez-Legarreta L., Grande B.H. and Vega V.V. 2016. Crystalline Structure and Magnetic Behavior of the Ni41Mn39In12Co8 alloy demonstrating giant magnetocaloric effect. Smart Materials and Structures. 25(8):085013.
[20] Pecharsky, V. K. and Gschneidner, K. A. Jr., 1997. Giant Magnetocaloric Effect in Gd5 (Si2Ge2). Physical Review Letters. 78(23), 4494-4497
[21] Caballero-Flores, R. 2016. Latent Heat Contribution to the Direct Magnetocaloric Effect in Ni–Mn–Ga Shape Memory Alloys with Coupled Martensitic and Magnetic Transformations, Journal of Physics D : Applied Physics. 49: 205004.
[22] Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson, K.A., Ceder, G. and Jain, A. 2019. Unsupervised Word Embeddings Capture Latent Knowledge from Materials Science Literature. Nature. 571(7763): 95-98.
[23] Build Software Better, Together, [Online]. Available: github.com/ElsevierDev/elsapy
[24] Sojka, P. Gensim: Topic Modelling for Humans. Available: radimrehurek.com/gensim_3.8.3/index.html.
[25] Google Code Archive - Long-term storage for Google Code Project Hosting. code.google.com
[26] Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D., and Gutfleisch, O. 2012. Giant Magnetocaloric Effect Driven by Structural Transitions. Nature Materials. 11(7), 620–626.
[27] Aryal, A., Pandey, S., Dubenko, I., Mazumdar, D., Stadler, S., and Ali, N. 2019. Magnetostructural Phase Transitions and Large Magnetic Entropy Changes in Ag-doped Mn1−xAgxCoGe intermetallic compounds. MRS Communications. 9(1), 315–320.
[28] Zhou, X., Li, W., Kunkel, H.P., Williams, G. 2004. A Criterion for Enhancing the Giant Magnetocaloric Effect:(Ni–Mn–Ga)—a Promising New System for Magnetic Refrigeration. Journal of Physics: Condensed Matter.16 (6): L39.
[29] Dubenko, I., Samanta, T., Pathak, A.K., Kazakov, A., Prudnikov, V., Stadler, S., Granovsky, A., Zhukov, A. and Ali, N. 2012. Magnetocaloric Effect and Multifunctional Properties of Ni–Mn-based Heusler alloys. Journal of Magnetism and Magnetic Materials. 324(21): 3530-3534.
[30] Gabrielyan, D. A., Semenov, V. V., Uteshev, A. A., Fedyaeva, O. A. and Shubenkova, E. G. 2015. Heat Waste use for Additional Electricity Generating using Magnets Thermal Power Plants. Procedia Engineering. 113: 198–202.
[31] Wada, H., Tomekawa, S., and Shiga, M. 1999. Magnetocaloric Effect of ErCo2. Journal of Magnetism and Magnetic Materials. 196-197: 689–690.
[32] Li, Y., Wang, H., Yao, Y., Xu, J., Han, Z., Fang, Y., Zhang, L., Zhang, C., Qian, B., and Jiang, X. 2019. Magnetic Phase Diagram, Magnetocaloric Effect, and Exchange Bias in Ni43Mn46Sn11−xGax Heusler alloys. Journal of Magnetism and Magnetic Materials. 478: 161–169.
[33] Carvalho, A. M., Alves, C. S., de Campos, A., Coelho, A. A., Gama, S., Gandra, F. C., von Ranke, P. J., and Oliveira, N. A. 2005. The Magnetic and Magnetocaloric Properties of Gd5Ge2Si2 Compound under Hydrostatic Pressure. Journal of Applied Physics. 97(10): 10M320.