An Investigation of Age-Hardenable Aluminum 2020 Alloy Processed by Elliptical Cross-Section Spiral Equal-Channel Angular Extrusion
Subject Areas :
1 - Mechanical Engineering Department, University of Birjand, Birjand, Iran
Keywords: Severe Plastic Deformation, Elliptical Cross-Section Spiral Equal Channel Extrusion, Microstructure, Mechanical Properties,
Abstract :
Severe Plastic Deformation (SPD) techniques are gaining increasing importance for fabricating metallic alloys with ultrafine-grained (UFG) microstructures. Among these, the Elliptical Cross-Section Spiral Equal-Channel Angular Extrusion (ECSEE) process is an emerging method that offers several advantages over conventional SPD techniques, including a more uniform strain distribution and reduced material waste. This study presents a comparative analysis of the microstructure and mechanical properties of an aluminum 2020 alloy processed via ECSEE and conventional Equal-Channel Angular Pressing (ECAP). In addition to SPD processing, the alloys underwent a series of heat treatments, including annealing, solution treatment, and aging, according to a specified schedule. The results indicate that the alloy subjected to a combined regime of solution treatment, ECSEE processing, and aging exhibited a 134% increase in strength and a 64% increase in hardness. Conversely, this processing route resulted in a significant reduction in both impact energy and ductility.
[1] Pázmán, J., Gácsi, Z. and Krállics, G. 2013. Comparative study of precipitation hardened and equal channel angular pressed powder metallurgical Al-alloy samples. Materials Science Forum. 752:20–29. doi:10.4028/www.scientific.net/MSF.752.20.
[2] Valiev, R. Z. and Langdon, T. G. 2006. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. 51(7):881–981. doi:10.1016/j.pmatsci.2006.02.003.
[3] Sakai, G., Nakamura, K., Horita, Z. and Langdon, T. G. 2005. Developing high-pressure torsion for use with bulk samples. Materials Science and Engineering: A. 406(1):268–273. doi: 10.1016/j.msea.2005.06.055.
[4] Khodabakhshi, F. and Kazeminezhad, M. 2011. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel. Materials & Design. 32(6): 3280–3286. doi:10.1016/j.matdes.2011.02.043.
[5] Richert, M., Liu, Q. and Hansen, N. 1999. Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Materials Science and Engineering: A. 260(1):275–283. doi:10.1016/S0921-5093(98)00975-8.
[6] Beygelzimer, Y., Varyukhin, V., Synkov, S. and Orlov, D. 2009. Useful properties of twist extrusion. Materials Science and Engineering: A. 503(1):14–17. doi:10.1016/j.msea.2008.04.046.
[7] Latypov, M. I., Beygelzimer, Y. and Kim, H. S. 2013. Comparative analysis of two twist-based SPD processes: Elliptical cross-section spiral equal-channel extrusion vs. twist extrusion. Materials Transactions. 54(9):1587–1591. doi:10.2320/matertrans.M2013105.
[8] Hosseini, S. A. and Manesh, H. D. 2009. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process. Materials & Design. 30(8):2911–2918. doi:10.1016/j.matdes.2009.01.030.
[9] Ferrasse, S., Segal, V. M., Alford, F., Kardokus, J. and Strothers, S. 2008. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries. Materials Science and Engineering: A. 493(1):130–140. doi: 10.1016/j.msea.2007.06.093.
[10] Wang, C., Li, F., Liu, J. and Li, J. 2013. Deformation analysis of elliptical cross-section spiral equal channel extrusion technique. Rare Metal Materials and Engineering. 42(4):679–683. doi:10.1016/S1875-5372(13)60076-4.
[11] Wang, C., Li, F., & Liu, J. 2018. Deformational features and microstructure evolution of copper fabricated by a single pass of the elliptical cross-section spiral equal-channel extrusion (ECSEE) process. Journal of Materials Engineering and Performance. 27(6):2967–2977. doi:10.1007/s11665-018-3343-5.
[12] Latypov, M. I., Beygelzimer, Y. and Kim, H. S. 2013. Comparative analysis of two twist-based SPD processes: Elliptical cross-section spiral equal-channel extrusion vs. twist extrusion. Materials Transactions. 54(9):1587–1591. doi:10.2320/matertrans.M2013105.
[13] Li, J., Wang, C., Li, F. and Liu, J. 2015. Microhardness distribution and microstructural evolution in pure aluminum subjected to severe plastic deformation: elliptical cross-sectioned spiral equal-channel extrusion (ECSEE). Journal of Materials Engineering and Performance. 24(11):4543–4550. doi:10.1007/s11665-015-1760-2.
[14] Edalati, K., Bachmaier, A., Beloshenko, V. A., Beygelzimer, Y., Blank, V. D., Botta, W. J. and Zhu, X. 2022. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Materials Research Letters. 10(4), 163–256. doi:10.1080/21663831.2022.2029779.
[15] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H. and Khosravi, M. 2025. Effects of horn type on the microhardness and microstructural homogeneity in ultrasonic-assisted simple shear extrusion. Experimental Techniques. 49(2):253–266. doi:10.1007/s40799-023-00678-6.
[16] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H. and Khosravi, M. 2024. Optimization of effective parameters on ultrasonic horns in simple shear extrusion process using Taguchi design of experiments. Iranian Journal of Manufacturing Engineering. 11(3):1–12. doi:10.22034/ijme.2024.445721.1933.
[17] Balali, M., Seyedkashi, S. M. H., Hasanabadi, A., Gorji, H., Baseri, H. and Khosravi, M. 2025. A new ultrasonic-assisted simple shear extrusion process in production of ultrafine grained copper. Journal of Materials Research and Technology. 31:908–920. doi:10.1016/j.jmrt.2024.11.145.
[18] Shahraki, S., Alinaghian, I. and Motahari-Nezhad, M. 2018. A study on elliptical cross-sectioned spiral equal-channel extrusion of AA7075: FE simulation and RSM approach. Transactions of the Indian Institute of Metals. 71(3):545–554. doi:10.1007/s12666-017-1185-8.
[19] Li, J., Wang, C., Li, F. and Liu, J. 2021. Microstructure and mechanical properties of pure Mg after spiral equal-channel extrusion. Materials Science and Technology. 37(4):384–394. doi:10.1080/02670836.2021.1876918.
[20] Namdar, M. and Jahromi, S. J. 2015. Influence of ECAP on the fatigue behavior of age-hardenable 2xxx aluminum alloy. International Journal of Minerals, Metallurgy, and Materials. 22(3):285–291. doi:10.1007/s12613-015-1072-4.
[21] Chen, L. J., Ma, C. Y., Stoica, G. M., Liaw, P. K., Xu, C. and Langdon, T. G. 2005. Mechanical behavior of a 6061 Al alloy and an Al₂O₃/6061 Al composite after equal-channel angular processing. Materials Science and Engineering: A. 410:472–475. doi:10.1016/j.msea.2005.08.119.
[22] Roshan, M. R., Jahromi, S. J. and Ebrahimi, R. 2011. Predicting the critical pre-aging time in ECAP processing of age-hardenable aluminum alloys. Journal of Alloys and Compounds. 509(30):7833–7839. doi:10.1016/j.jallcom.2011.04.153.