Investigation of the Effect of a Nonlinear Ion Concentration Function on the Electromechanical Behavior of Ionic Polymer–Metal Composites
Subject Areas :
Reza Poureini
1
,
Hamid Soleimanimehr
2
*
,
Navid Seyedkazem Viliani
3
,
Ali Abdollahi
4
1 - Ph.D. Student, Department of Mechanical and Aerospace Engineering, SR.C., Islamic Azad University, Tehran, Iran
2 - Associate Professor, Modern Automotive Research Center, Department of Mechanical and Aerospace Engineering, SR.C., Islamic Azad University, Tehran, Iran
3 - Assistant Professor, Department of Mechanical Engineering, Ab.C., Islamic Azad University, Abhar, Iran
4 - Associate Professor, Modern Automotive Research Center, Department of Mechanical and Aerospace Engineering, SR.C., Islamic Azad University, Tehran, Iran
Keywords: IPMC, Nonlinear Ion Concentration, Euler-Bernoulli Beam, Energy Method, Nernst-Planck, Poisson Equation, Biaxial Bending,
Abstract :
The effect of nonlinear ion concentration distribution and electric potential gradient on the induced biaxial moments in ionic polymer–metal composite (IPMC) actuators is investigated. To accurately model the bending behavior, a combined approach is employed, integrating the Euler–Bernoulli beam theory, the principle of minimum potential energy, and a nonlinear field- and time-dependent mechanical property model. In this framework, the ion concentration distribution is assumed to be nonlinear along both longitudinal and transverse directions. The coupled electro-ionic interactions are analyzed using the Nernst–Planck and Poisson equations. Numerical results demonstrate that adopting a nonlinear ion distribution leads to nearly equal induced electrical moments in both directions at the mid-plane, significantly reducing biaxial bending and yielding a more balanced deformation profile. This approach yields a 95% reduction in transverse moment compared to the linear model, underscoring the superior effectiveness of the proposed nonlinear method in mitigating undesirable biaxial bending in IPMC actuators.
[1] Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J. 1998. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart materials and structures. 7(6):15. doi:10.1088/0964-1726/7/6/001.
[2] López-Díaz, A., Vázquez, A.S. and Vázquez, E. 2024. Hydrogels in soft robotics: Past, present, and future. ACS nano. 18(32):20817-20826. doi:10.1021/acsnano.3c12200.
[3] Salami, S.J., Soleimanimehr, H., Maghsoudpour, A. and Etemadi Haghighi, S. 2023. Fabrication of polycaprolactone/chitosan/hydroxyapatite structure to improve the mechanical behavior of the hydrogel‐based scaffolds for bone tissue engineering: Biscaffold approach. Polymer composites. 44(8):4641-4653. Doi:10.1002/pc.27428.
[4] Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. 2008. Beam bending solutions based on nonlocal Timoshenko beam theory. Journal of Engineering Mechanics. 134(6):475-481. doi:10.1061/(ASCE)0733-9399(2008)134:6(475).
[5] Nasrollah, A., Soleimanimehr, H. and Bafandeh Haghighi, Sh. 2024. IPMC-based actuators: An approach for measuring a linear form of its static equation. Heliyon. 10(4):24687. doi:10.1016/j.heliyon.2024.e24687.
[6] Annabestani, M., Naghavi, N. and Maymandi-Nejad, M. 2021. A 3D analytical ion transport model for ionic polymer metal composite actuators in large bending deformations. Scientific reports. 11(1):6435. doi:10.1038/s41598-021-85776-4.
[7] Buchberger, G. and Schoeftner, J. 2013. Modeling of slender laminated piezoelastic beams with resistive electrodes—comparison of analytical results with three-dimensional finite element calculations. Smart materials and structures. 22(3):032001. doi:10.1088/0964-1726/22/3/032001.
[8] Boldini, A. 2024. A multi-cation model for the actuation of ionic membranes with ionic liquids. Materials Advances. doi:10.1039/d4ma00097h.
[9] Saccardo, M.C., Barbosa, R., Zuquello, A.G., Blanco, G.E.D.O., Tozzi, K.A., Gonçalves, R. and Scuracchio, C.H. 2024. Beyond static: Tracking the dynamic nature of water absorption and Young’s modulus in IPMC devices. Journal of Applied Polymer Science. 141(31):55730. doi:10.1002/app.55730.
[10] Soleimanimehr, H. and Bafandeh Haghighi, Sh. Nasrollah, A. 2026. Experimental Analysis of the Effect of Mechanical Topology on the Surface of Biological Microgripper Made of Ionic- Polymer Metal Composite Smart Material. Mechanics of Advanced Composite Structures. doi:10.22075/macs.2024.33962.1670.
[11] Tao, H., Hu, G., Lu, S., Li, B., Zhang, Y. and Ru, J. 2024. Single-Walled Carbon Nanotube-Reinforced PEDOT: PSS Hybrid Electrodes for High-Performance Ionic Electroactive Polymer Actuator. Materials. 17(10):2469. doi:10.3390/ma17102469.
[12] Soleimanimehr, H. and Nasrollah, A. 2021. A numerical investigation the effects of the voltage on the displacement and stress of copper-based ionic polymer-metal composites. Journal of Modern Processes in Manufacturing and Production. 10(1):77-86. dor:20.1001.1.27170314.2021.10.1.6.5.
[13] Biswal, D.K. and Nayak, B. 2016. Analysis of time dependent bending response of Ag-IPMC actuator. Procedia Engineering. 144:600-606. doi:10.1016/j.proeng.2016.05.047.
[14] Boldini, A. and Porfiri, M. 2020. Multiaxial deformations of ionic polymer metal composites. International Journal of Engineering Science. 149:103227. doi:10.1016/j.ijengsci.2020.103227.
[15] Rao, S.S. 2019. Vibration of continuous systems. John Wiley & Sons.
[16] Ugural, A.C. 2009. Stresses in beams, plates, and shells. CRC press. doi:10.1201/b17516.
[17] Shahinpoor, M. ed. 2015. Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Volume 2. Royal Society of Chemistry. doi:10.1039/9781782627234.
[18] Gelfand, I.M. and Silverman, R.A. 2000. Calculus of variations. Courier Corporation.
[19] Mechanics of materials Popov 2th edition Egor P. Popov.
[20] Leo, D.J. 2007. Engineering analysis of smart material systems. John Wiley & Sons. doi:10.1002/9780470209721.