Evaluation of Hydroforming Parameters for Motorcycle Exhaust Pipe Production Using FEM Simulation
Subject Areas :
Mohammad Sajjad Mahdieh
1
*
,
Farshad Nazari
2
,
Laith Jawad
3
1 - Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Metal Forming, Hydroforming Process, ABAQUS, Automotive Industry, FEM Simulation,
Abstract :
By utilizing the hydroforming technique, parts with enhanced fatigue strength can be produced without the need for welding seams. Additionally, in the automotive sector, the production of complex cylindrical components from metal pipes has gained attention, particularly for improving the strength-to-weight ratio and reducing vehicle fuel consumption. As a result, automobile manufacturers have increasingly focused on this method. Understanding the key factors influencing the successful execution of this process is essential for achieving high-quality products, optimal geometry, improved efficiency, and cost reduction. To examine material behavior during hydroforming and to avoid significant material loss, simulation procedures are crucial. This study investigates the manufacturing of motorcycle exhaust pipes through the hydroforming process, using FEM simulation (ABAQUS software), and calculates the optimal die geometry, required press force, and fluid pressure. Simulation results from ABAQUS demonstrate that the part is fully formed with an internal fluid pressure of 8.5 MPa and an axial load of 1120 kN.
[1] Mahdieh, M.S., Rafati, E. and Kargar Sichani, S. 2013. Investigation of variance of roller burnishing parameters on surface quality by taguchi approach. ADMT Journal. 6(3).
[2] Saraeian, P., Gholami, M., Behagh, A., Behagh, O., Javadinejad, H.R. and Mahdieh, M. 2016. Influence of vibratory finishing process by incorporating abrasive ceramics and glassy materials on surface roughness of ck45 steel. ADMT Journal. 9(4): 1-6.
[3] Vakili Sohrforozani, A., Farahnakian, M., Mahdieh, M.S., Behagh, A.M. and Behagh, O. 2019. A study of abrasive media effect on deburring in barrel finishing process. Journal of Modern Processes in Manufacturing and Production. 8(3): 27-39.
[4] Vakili Sohrforozani, A., Farahnakian, M., Mahdieh, M.S., Behagh, A.M. and Behagh, O. 2020. Effects of abrasive media on surface roughness in barrel finishing process. ADMT Journal. 13(3): 75-82.
[5] Alaswad, A., Benyounis, K. and Olabi, A. 2012. Tube hydroforming process: A reference guide. Materials & Design. 33: 328-339. doi: 10.1016/j.matdes.2011.07.052.
[6] Ahmetoglu, M. and Altan, T. 2000. Tube hydroforming: State-of-the-art and future trends. Journal of Materials Processing Technology. 98(1): 25-33. doi: 10.1016/S0924-0136(99)00302-7.
[7] Ahmetoglu, M., Sutter, K., Li, X. and Altan, T. 2000. Tube hydroforming: Current research, applications and need for training. Journal of materials processing technology. 98(2): 224-231. doi: 10.1016/S0924-0136(99)00203-4.
[8] Siegert, K., Häussermann, M., Lösch, B. and Rieger, R. 2000. Recent developments in hydroforming technology. Journal of Materials Processing Technology. 98(2): 251-258. doi: 10.1016/S0924-0136(99)00206-X.
[9] Koç, M. and Altan, T. 2001. An overall review of the tube hydroforming (thf) technology. Journal of Materials Processing Technology. 108(3): 384-393. doi: 10.1016/S0924-0136(00)00830-X.
[10] Bell, C., Corney, J. and Zuelli, N. 2020. A state of the art review of hydroforming technology. International Journal of Material Forming. 13(5): 789-828. doi:10.1007/s12289-019-01507-1.
[11] Lee, M.-G., Korkolis, Y.P. and Kim, J.H. 2015. Recent developments in hydroforming technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 229(4): 572-596. doi: 10.1177/095440541454.
[12] Mahdieh, M.S. and Esteki, M.R. 2022. Feasibility investigation of hydroforming of dental drill body by fem simulation. Journal of Modern Processes in Manufacturing and Production. 11(2): 71-83. dor: 20.1001.1.27170314.2022.11.2.7.5
[13] Cheng, L., Guo, H., Sun, L., Yang, C., Sun, F. and Li, J. 2024. Real-time simulation of tube hydroforming by integrating finite-element method and machine learning. Journal of Manufacturing and Materials Processing. 8(4): 175. doi: 10.3390/jmmp8040175.
[14] Kucharska, B. and Moraczyński, O. 2020. Exhaust system piping made by hydroforming: Relations between stresses, microstructure, mechanical properties and surface. Archives of Civil and Mechanical Engineering. 20(4): 141. doi:10.1007/s43452-020-00142-x.
[15] Liu, C., Abd El-Aty, A., Lee, M.-G., Hou, Y., Xu, Y., Hu, S., Cheng, C., Tao, J. and Guo, X. 2023. Predicting the forming limits in the tube hydroforming process by coupling the cyclic plasticity model with ductile fracture criteria. Journal of Materials Research and Technology. 26: 109-120. doi: 10.1016/j.jmrt.2023.07.177.
[16] Liu, X.J., Zou, Z.L., Zhou, Y.Y. and Li, C. 2024. Study on hydroforming of aluminum alloy thin-wall curved parts based on upper layer sheet and numerical simulation. The International Journal of Advanced Manufacturing Technology. 132(11): 5733-5752.doi: 10.1007/s00170-024-13581-0.
[17] Marlapalle, B.G. and Hingole, R.S. 2021. Predictions of formability parameters in tube hydroforming process. SN Applied Sciences. 3(6): 606. doi:10.1007/s42452-021-04533-4.
[18] Mahdieh, M.S. 2020. The surface integrity of ultra-fine grain steel, electrical discharge machined using iso-pulse and resistance–capacitance-type generator. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 234(4): 564-573. doi: 10.1177/1464420720902782.
[19] Mahdieh, M.S. 2020. Recast layer and heat-affected zone structure of ultra-fined grained low-carbon steel machined by electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 234(5):933-944. doi: 10.1177/0954405419889202.
[20] Mahdieh, M.S. and Mahdavinejad, R. 2016. Comparative study on electrical discharge machining of ultrafine-grain al, cu, and steel. Metallurgical and Materials Transactions A. 47(12): 6237-6247. doi: 10.1007/s11661-016-3741-y.
[21] Mahdieh, M.S. and Zare-Reisabadi, S. 2019. Effects of electro-discharge machining process on ultra-fined grain copper. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 233(15): 5341-5349. doi:10.1177/0954406219844802.
[22] Mahdieh, M.S. and Mahdavinejad, R.A. 2017. A study of stored energy in ultra-fined grained aluminum machined by electrical discharge machining. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 231(23): 4470-4478. doi: 10.1177/0954406216666872.
[23] Mahdieh, M.S. and Mahdavinejad, R. 2018. Recast layer and micro-cracks in electrical discharge machining of ultra-fine-grained aluminum. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 232(3): 428-437. doi: 10.1177/0954405416641326.
[24] Feng, Y., Chen, G., Geng, S. and Shan, J. 2025. Cross scale numerical simulation and experimental study on hydroforming of double-layer y-shaped tube. Modelling and Simulation in Materials Science and Engineering. 33(3): 035006. doi: 10.1088/1361-651X/adbc05/meta.
[25] Raut, S.V., Ramesh, A., Arun, A. and Sumesh, C. 2021. Finite element analysis and optimization of tube hydroforming process. Materials Today: Proceedings. 46: 5008-5016. doi: 10.1016/j.matpr.2020.10.394.
[26] Zhu, Q.-q., Huang, S., Wang, D.-x., Li, J.-p., Hua, F.-a. and Yang, P. 2022. Numerical simulation and experimental study of warm hydro-forming of magnesium alloy sheet. Journal of Manufacturing Processes. 80: 43-53. doi: 10.1016/j.jmapro.2022.05.054.
[27] Asnafi, N. 1999. Analytical modelling of tube hydroforming. Thin-walled structures. 34(4): 295-330. doi: 10.1016/S0263-8231(99)00018-X.
[28] Asnafi, N. and Skogsgårdh, A. 2000. Theoretical and experimental analysis of stroke-controlled tube hydroforming. Materials Science and Engineering: A. 279(1-2): 95-110. doi: 10.1016/S0921-5093(99)00646-2.
[29] Mahdieh, M.S. and Monjezi, A. 2022. Investigation of an innovative cleaning method for the vertical oil storage tank by fem simulation. Iranian Journal of Materials Forming. doi: 10.22099/ijmf.2022.43842.1229.
[30] Nefussi, G. and Combescure, A. 2002. Coupled buckling and plastic instability for tube hydroforming. International Journal of Mechanical Sciences. 44(5): 899-914. doi: 10.1016/S0020-7403(02)00031-0.
[31] Kim, J., Kim, S.-W., Song, W.-J. and Kang, B.-S. 2004. Analytical approach to bursting in tube hydroforming using diffuse plastic instability. International journal of mechanical sciences. 46(10): 1535-1547. doi: 10.1016/j.ijmecsci.2004.09.001.
[32] Boumaiza, S., Cordebois, J.-P., Brunet, M. and Nefussi, G. 2006. Analytical and numerical study on plastic instabilities for axisymmetric tube bulging. International journal of mechanical sciences. 48(6): 674-682. doi: 10.1016/j.ijmecsci.2005.12.012.
[33] Sornin, D., Fayolle, S., Bouchard, P.-O. and Massoni, E. 2009. Plastic instabilities analysis during t-shaped tubes hydro-forming process. International Journal of Material Forming. 2(2): 131-144. doi: 10.1007/s12289-009-0399-7.
[34] Butcher, C., Chen, Z., Bardelcik, A. and Worswick, M. 2009. Damage-based finite-element modeling of tube hydroforming. International Journal of Fracture. 155(1): 55-65. doi: 10.1007/s10704-009-9323-x.
[35] Crapps, J., Marin, E., Horstemeyer, M., Yassar, R. and Wang, P. 2010. Internal state variable plasticity-damage modeling of the copper tee-shaped tube hydroforming process. Journal of Materials Processing Technology. 210(13): 1726-1737. doi: 10.1016/j.jmatprotec.2010.06.003.
[36] Li, H., Wang, X., Yuan, S., Miao, Q. and Wang, Z. 2004. Typical stress states of tube hydroforming and their distribution on the yield ellipse. Journal of Materials Processing Technology. 151(1-3): 345-349. doi: 10.1016/j.jmatprotec.2004.04.085.
[37] Afshar, A., Hashemi, R., Madoliat, R., Rahmatabadi, D. and Hadiyan, B. 2017. Numerical and experimental study of bursting prediction in tube hydroforming of al 7020-t6. Mechanics & Industry. 18(4): 411. doi: 10.1051/meca/2017019.
[38] Desu, R.K., Krishnamurthy, H.N., Balu, A., Gupta, A.K. and Singh, S.K. 2016. Mechanical properties of austenitic stainless steel 304l and 316l at elevated temperatures. Journal of Materials Research and Technology. 5(1): 13-20. doi: 10.1016/j.jmrt.2015.04.001.
[39] Gheisary, M. and Djavanroodi, F. 2010. Experimental and numerical investigation of double bulge tube hydroforming. Modares Mechanical Engineering. 10(3): 1-9. dor: 20.1001.1.10275940.1389.10.3.8.3.
[40] Hwang, Y. M. and Altan, T. 2003. Finite element analysis of tube hydroforming processes in a rectangular die. Finite Elements in Analysis and Design. 39(11): 1071-1082. doi: 10.1016/S0168-874X(02)00157-9.
[41] Hwang, Y.-M. and Lin, Y.-K. 2002. Analysis and finite element simulation of the tube bulge hydroforming process. Journal of materials processing technology. 125: 821-825. doi: 10.1016/S0924-0136(02)00381-3.
[42] Zadeh, H.K. and Mashhadi, M.M. 2006. Finite element simulation and experiment in tube hydroforming of unequal t shapes. Journal of Materials Processing Technology. 177(1-3): 684-687. doi: 10.1016/j.jmatprotec.2006.04.056.
[43] Khorsandi, A. and Loh-Mousavi, M. 2010. Numerical investigations on the effect of pulsating pressure on improvement of formability in hydroforming of bent tube by fem. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering. 3(1): 11-20.
[44] Choi, H.-H., Hwang, S.-M., Kang, Y., Kim, J. and Kang, B. 2002. Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm. The International Journal of Advanced Manufacturing Technology. 20(6): 407-413. doi: 10.1007/s001700200170.
[45] Bakhshi-Jooybari, M.L.-M.M. and Hosseinipour, K.M.M.F.S. Experimental study and numerical study of pulsating hydroforming of tube in box-shaped die.
[46] Mohammadalizade, F., Gorji, A., Bakhshi, M. and Elyasi, M. 2016. Reforming internal pressure and axial feeding loading paths in hydroforming process of cylindrical stepped tube in order to improve the thickness distribution. Amirkabir Journal of Mechanical Engineering. 48(4): 389-400. doi: 10.22060/mej.2016.522.
[47] Peckner, D. and Bernstein, I.M. 1977. Handbook of stainless steels.
[48] Soares, G.C., Rodrigues, M.C.M. and Santos, L.d.A. 2017. Influence of temperature on mechanical properties, fracture morphology and strain hardening behavior of a 304 stainless steel. Materials Research. 20(Suppl 2): 141-151. doi: 10.1590/1980-5373-MR-2016-0932.