Strength and Stability of a Motorized Unilateral External Fixation Device for Fractures and Bone Loss under Compressive Load
Subject Areas :
Alireza Bahramkia
1
*
,
Mehran Fakhraie
2
,
Salar Khajehpour
3
,
Seyed Mohammad Tahami
4
,
Raheb Gholami
5
1 - Department of Mechanical Engineering, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
2 - Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
4 - Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
5 - Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
Keywords: Unilateral External Bone Fixator, Bone Fracture, Bone Loss, Orthopedics, FEM,
Abstract :
Aligning broken bones using a unilateral external bone fixator has become popular today. One of the advantages of unilateral external bone fixators is their ease of installation and adjustment compared to circular and horseshoe models. Unlike circular and horseshoe-shaped models, the advantages of unilateral external bone fixators are ease of installation and adjustability. The present research aims to ensure the stability and strength of the unilateral motorized external bone fixation device, equipped with four motors designed and then built in SolidWorks software under a compressive load of 150N when the motors are in motion. The device was simulated and analyzed using the Finite Element Method (FEM) in ANSYS software. Then, the constructed device was tested in the laboratory by applying a compressive force of 150N. The results of the simulation and experimental method of compressive force application and examination of the reliability coefficient using the FEM in the simulated method indicated that: The device is designed with the necessary stability, rigidity, and reliability to stabilize fractured long bones with the ability to move broken long bones where part of the bone has been lost. The device has precise bone movement and four independent motorized units; based on the patient's needs and the specialist's instructions, bone formation is possible.
[1] Fragomen, A.T. and Rozbruch, S.R. 2007. The mechanics of external fixation. HSS Journal. 3(1):13-29. doi: 10.1007/s11420-006-9025-0.
[2] Paul, G.W. 2003. The history of external fixation. Clinics in podiatric medicine and surgery. 20(1):1-8. PII: S0891-8422(02)00050-2.
[3] Hernigou, P. 2017. History of external fixation for treatment of fractures. International orthopaedics. 41(4):845-853. doi: 10.1007/s00264-016-3324-y.
[4] Fleming, B., Paley, D., Kristiansen, T. and Pope, M. 1989. A biomechanical analysis of the Ilizarov external fixator. Clinical Orthopaedics and Related Research. 241:95-105.
[5] Broekhuizen, A.H. 2000. The Stability of Orthofix External Fixation: a Comparative Evaluation. In Orthofix External Fixation in Trauma and Orthopaedics. 71-76 .
[6] Qiao, F., Li, D., Jin, Z., Hao, D., Liao, Y. and Gong, S. 2016. A novel combination of computer-assisted reduction technique and three dimensional printed patient-specific external fixator for treatment of tibial fractures. International Orthopaedics. 40(4):835-841. doi: 10.1007/s00264-015-2943-z.
[7] Wei, M., Chen, J., Guo, Y. and Sun, H. 2017. The computer-aided parallel external fixator for complex lower limb deformity correction. International Journal of Computer Assisted Radiology and Surgery. 12(12):2107-2117. doi: 10.1007/s11548-017-1654-x.
[8] Corona, P.S., Vicente, M., Tetsworth, K. and Glatt, V. 2018. Preliminary results using patient-specific 3d printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury. 49:51-S59. doi: org/10.1016/j.injury.2018.07.017.
[9] Zhao, J.X., Li, C., Ren, H., Hao, M., Zhang, L.C. and Tang, P.F. 2020. Evolution and current applications of robot-assisted fracture reduction: a comprehensive review. Annals of biomedical engineering. 48(1):203-224. doi:org/10.1007/s10439-019-02332-y.
[10] Matsushita, T., Nakamura, K., Ohnishi, I. and Kurokawa, T. 1998. Sliding performance of unilateral external fixators for tibia. Medical engineering & physics. 20(1):66-69. PII: S1350-4533(97)00050-7.
[11] Sangkaew, C. 2004. Distraction osteogenesis with conventional external fixator for tibial bone loss. International orthopaedics. 28(3):171-175. doi: 10.1007/s00264-004-0553-2.
[12] Hussain, S., Inam, M., Arif, M., Shabbir, M. and Ahmad, I. 2008. Limb length discrepancy in lower limb management with unilateral external fixator. Journal of Postgraduate Medical Institute. 22(4):285-291.
[13] Tang, X., Zhu, J., Li, Q., Chen, G., Fu, W. and Li, J. 2015. Knee arthrodesis using a unilateral external fixator combined with crossed cannulated screws for the treatment of end-stage tuberculosis of the knee. BMC Musculoskeletal Disorders. 16(1):1-9. doi: 10.1186/s12891-015-0667-2.
[14] Basso, M., Formica, M., Cavagnaro, L., Federici, M., Lombardi, M., Lanza, F. and Felli, L. 2017. Unilateral external fixator in the treatment of humeral shaft fractures: results of a single center retrospective study. Musculoskeletal Surgery. 101(3):237-242. doi: 10.1007/s12306-017-0473-0.
[15] Yushan, M., Ren, P., Abula, A., Alike, Y., Abulaiti, A., Ma, C. and Yusufu, A. 2020. Bifocal or trifocal (double‐level) bone transport using unilateral rail system in the treatment of large tibial defects caused by infection: a retrospective study. Orthopaedic Surgery. 12(1):184-193. doi: 10.1111/os.12604.
[16] Sen, C., Akgül, T., Tetsworth, K.D., Balci, H.I., Yildiz, F. and Necmettin, T. 2020. Combined Technique for the Treatment of Infected Nonunions of the Distal Femur With Bone Loss: Short Supracondylar Nail–Augmented Acute Shortening/Lengthening. Journal of orthopaedic trauma. 34(9):476-481. doi: 10.1097/BOT.0000000000001764.
[17] Strebe, S., Kim, H., Russell, J.P., Hsieh, A.H., Nascone, J. and O’Toole, R.V. 2014. Analysis of strategies to increase external fixator stiffness: Is double stacking worth the cost?. Injury, 45(7):1049-1053. doi: org/10.1016/j.injury.2013.11.013.
[18] Ang, B.F.H., Chen, J.Y., Yew, A.K.S., Chua, S.K., Chou, S.M., Chia, S.L., Koh, J.S.B. and Howe, T.S. 2017. Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness. Bone & Joint Research. 6(4):216-223. doi: 10.1302/2046-3758.64.2000470.
[19] Li, J., Zhao, X., Tao, C. and Ji, R. 2018. Investigate of the influence of pin deviation on the biomechanical environment of fixator-bone system by finite element method. Vibroengineering Procedia. 20:128-133. doi: org/10.21595/vp.2018.19812.
[20] Zainudin, N.A. and Ramlee, M.H. 2019. In Silico of the Different Pin Size of Unilateral Tibia External Fixator: A Pilot Study. EC Orthopaedics. 10:07-10.
[21] Shi, D., Liu, K., Zhang, H., Wang, X., Li, G. and Zheng, L. 2020. Investigating the biomechanical function of the plate-type external fixator in the treatment of tibial fractures: a biomechanical study. BMC Musculoskeletal Disorders. 21(1):1-9. doi: org/10.1186/s12891-020-3144-5.
[22] Kouassi, K.J.E., Cartiaux, O., Fonkoué, L., Detrembleur, C. and Cornu, O. 2020. Biomechanical study of a low-cost external fixator for diaphyseal fractures of long bones. Journal of Orthopaedic Surgery and Research. 15(1):1-8. doi: org/10.1186/s13018-020-01777-5.
[23] Lesniewska, A., Choromanski, W., Deszczynski, J. and Dobrzynski, G. 2006. January. Modeling and simulation of physical performance of a external unilateral mechatronic orthopaedic fixator-Bone system. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. 1533-1536n .
[24] Donaldson, F.E., Pankaj, P. and Simpson, A.H.R. 2012. Bone properties affect loosening of half-pin external fixators at the pin–bone interface. Injury. 43(10):1764-1770. doi: org/10.1016/j.injury.2012.07.001.
[25] Roseiro, L. and Neto, A. 2013. Optimal Configuration of Uniplanar-Unilateral External Fixators in Tibia Fractures. In Computational Intelligence and Decision Making . 461-468 . doi: 10.1007/978-94-007-4722-7_43.
[26] Wang, X.K., Ye, J.D., Gu, F.S., Wang, A.G., Zhang, C.Q., Tian, Q.Q., Li, X. and Dong, L.M. 2014. Numerical simulation research to both the external fixation surgery scheme of intertrochanteric fracture and the healing process, and its clinical application. Bio-medical materials and engineering. 24(1):625-632. doi: 10.3233/BME-130850.
[27] Li, J., Zhao, X., Hu, X., Tao, C. and Ji, R. 2018. A theoretical analysis and finite element simulation of fixator–bone system stiffness on healing progression. Journal of Applied Biomaterials & Functional Materials. 16(3):115-125. doi: 10.1177/2280800017750357.
[28] Salunkhe, V.G., Gajakosh, A.K., Jinaga, R. and Thimmaiah, J. 2019, March. Design and finite element analysis of external fixator used in orthopaedics. In AIP Conference Proceedings . 2080:040002 . AIP Publishing LLC. doi.org/10.1063/1.5092920.
[29] Pervan, N., Mešić, E., Muminović, A.J., Delić, M. and Muratović, E. 2022. Stiffness Analysis of the External Fixation System at Axial Pressure Load. Advances in Science and Technology Research Journal. 16(3):226-233. doi: org/10.12913/22998624/149599.
[30] Pervan, N., Muminović, A. J., Mešić, E., Delić, M. and Muratović, E. 2022. Analysis of Mechanical Stability for External Fixation Device in the Case of Anterior-Posterior Bending. Advances in Science and Technology Research Journal. 16(3):136-142. doi: org/10.12913/22998624/146857.
[31] Albushtra, A., Mohsen, A.H., Alnozaili, K.A., Ahmed, F., Aljobahi, Y.M.A.A., Mohammed, F. and Badheeb, M. 2024. External Fixation as a Primary and Definitive Treatment for Complex Tibial Diaphyseal Fractures: An Underutilized and Efficacious Approach. 75-84. doi: org/10.2147/ORR.S450774.
[32] Abd Aziz, A.U., Ammarullah, M.I., Ng, B.W., Gan, H.S., Kadir, M.R.A. and Ramlee, M.H. 2024. Unilateral external fixator and its biomechanical effects in treating different types of femoral fracture: A finite element study with experimental validated model .10(4). doi: org/10.1016/j.heliyon.2024.e26660.
[33] Çöpoğlu, M.T., Oflaz, H. and Havıtçıoğlu, H. 2025. Design and prototype production of a new external fixator pin that can dampen movement to reduce pin tract inflammation. Journal of Orthopaedic Reports.4(3):100463. doi: org/10.1016/j.jorep.2024.100463.
[34] Elmedin, M., Vahid, A., Nedim, P. and Nedžad, R. 2015. Finite element analysis and experimental testing of stiffness of the Sarafix external fixator. Procedia Engineering. 100: 1598-1607. doi: 10.1016/j.proeng.2015.01.533.
[35] Bahramkia, A., Fakhraie, M., Khajehpour, S., Tahami, S. M. and Gholami, R. 2022. Investigating the stability of motorized unilateral external bone fixators to recover the destroyed bones in dynamic mode using the finite element simulation. Iranian Journal of Manufacturing Engineering. 9(4):24-35 . doi: 10.22034/IJME.2022.159959.
[36] Bahramkia, A., Fakhraie, M., Khajehpour, S., Tahami, S. M. and Gholami, R. 2022. Evaluation of Stability and Reliability of Motorized Unilateral External Fixator, Designed and Simulated Using Finite Element Method to Treat Bone Fractures and Bone Loss. Journal of Modern Processes in Manufacturing and Production. 11(4):5-21. dor: 20.1001.1.27170314.2022.11.4.1.3.