ارزیابی رفتار خزشی کامپوزیتهای نانوساختار Al-Al_3 V و Al-(Al_3 V-Al_2 O_3) تولید شده به روش آلیاژسازی مکانیکی و اکستروژن گرم
محورهای موضوعی : متالورژی پودر
سیده زهرا انوری
1
*
,
فتح الله کریم زاده
2
,
محمد حسین عنایتی
3
1 - استادیار، گروه مهندسی مکانیک و متالورژی، دانشگاه پیام نور، تهران، ایران
2 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران
3 - استاد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران
کلید واژه: کامپوزیت زمینه آلومینیم, آلیاژ سازی مکانیکی, اکستروژن گرم, خزش,
چکیده مقاله :
در سال هاي اخیر خواص خزشی و پایداري حرارتی کامپوزیت هاي زمینه آلومینیمی به طور گسترده مورد توجه قرار گرفته است. دلیل این موضوع مقاوم سازي هر چه بیشتر این مواد جهت کاربردهاي دماي بالا است. به طور کلی افزودن ذرات تقویت کننده به زمینه آلومینیمی سبب افزایش مقاومت خزشی زمینه میشود. بنابراین در این پژوهش رفتار خزشی کامپوزیت های نانوساختار زمینه آلومینیم حاوی تقویت کنندههای Al3V و Al3V-Al2O3 تولید شده با استفاده از فرایند آلیاژسازی مکانیکی، پرس سرد و اکستروژن گرم مورد ارزیابی قرار گرفت. مرفولوژی و ریزساختار نمونههای تولید شده با استفاده از میکروسکوپ الکترونی روبشی بررسی شد. رفتار خزشی نمونهها در محدوده دمایی 250 تا 350 درجه سانتیگراد مورد ارزیابی قرار گرفت. در بررسی رفتار خزشی کامپوزیتهای تولید شده توان تنش ظاهری که به شدت به دما و تنش وابسته است نزدیک 5 بدست آمد و مکانیزم خزش در دماهای مورد مطالعه صعود نابجایی ها به دست آمد. همچنین انرژی فعال سازی ظاهری برای دو نمونه Al-10wt.%(Al3V-Al2O3) وAl-10wt.%Al3V به ترتیب 178 و 161 کیلوژول بر مول به دست آمد و بزرگتر از انرژی فعال سازی نفوذ خودی در آلومینیم بود. رفتار خزشی کامپوزیت ها همرا ه با تنش آستانه بود که با افزایش دما کاهش یافت.
In recent years, the creep and thermal stability of aluminum matrix composites have attracted considerable attention due to their potential for high-temperature applications. The addition of reinforcing particles generally enhances the creep resistance of the aluminum matrix. In this study, the creep behavior of aluminum matrix nanocomposites reinforced with Al3V and Al3V-Al2O3 particles fabricated using mechanical alloying, cold pressing, and hot extrusion was investigated. The morphology and microstructure of the prepared samples were examined using scanning electron microscopy (SEM). The creep behavior of the samples was evaluated in the temperature range of 250-350 °C. The results showed that the true stress exponent of the composites, which was highly dependent on temperature and stress, was close to 5. The creep mechanism at the studied temperatures was found to be dislocation climb. The apparent activation energies for Al-10wt.%(Al3V-Al2O3) and Al-10wt.%Al3V were 178 and 161 kJ/mol, respectively, which were higher than the self-diffusion activation energy in aluminum. The creep behavior of the composites was accompanied by a stress threshold that decreased with increasing temperature.
[1] W.O. Soboyejo, "Advanced structural materials properties, optimization design and applications", Tailor & Fancies Group LLC, New York, 2006.
[2] S. H. Choi, S. Y. Sung, H. J. Choi, Y. H. Sohn, B. S. Han & K. A. Lee, "High temperature tensile deformation behavior of new heat resistant aluminum alloy", Procedia Engineering, vol. 10, pp. 159–164, 2011.
[3] D. Vojtech, A. Michalcova, J. Pilch, P. Sittner, J. Serak & P. Novak, "Structural characteristics and thermal stability of Al–5.7Cr–2.5Fe–1.3Ti alloy produced by powder metallurgy", Journal of Alloys and Compounds, vol. 475, pp. 151–156, 2009.
[4] ی. صابری، س. ناطق، ش. میردامادی،"بررسی خواص کامپوزیت متخلخل زمینه آلومینیوم تقویت شده با نانو ذرات کاربید سیلیسیم با روشهای مختلف ارزیابی خواص خزشی"، فرآیندهای نوین در مهندسی مواد، دوره 11، شماره 2، صفحه 41-56، 1396.
[5] K. E. Knipling, "Criteria for developing castable, creep-resistant aluminum-based alloys-Areview", Metallkd, vol. 97, pp. 246-265, 2006.
[6] M. Usluuysal, "Creep Behavior Prediction of Al-TiB2 Metal Matrix Composite using Finite Element", Journal of Science and Technology, vol. 8, no. 4, pp. 6-11, 2018.
[7] V. Monfared, H. R. Bakhsheshi‑Rad, M. Razzaghi, D. Toghraie, M. Hekmatifar & F. Berto, "A Review Study for Creep in Different Nanocomposites", Metals and Materials International, vol. 29, pp. 2444–2457, 2023.
[8] H. Xia & et al, "Effect of In-situ TiB2 Particles on the Creep Properties of 3wt.% TiB2/Al-Cu-Mg-Ag Composite", Recent advanced in multicomponent alloys and composites, vol. 74, pp. 4121-4128, 2022.
[9] B. F. Luan, N. Hansen, A. Godfrey, G. H. Wu & Q. Liu, "High strength Al–Al2O3p composites: optimization of extrusion parameters", Materials and Design, vol. 32, pp. 3810–3817, 2011.
[10] M. S. Zedalis & M. E. Fine, "Precipitation and ostwald rippening in dilute Al base-Zr-V alloys", Metallurgical Transactions A, vol. 17, pp. 2187-2198, 1987.
[11] M. E. Fine, "Precipitation hardening of aluminum alloys", Metallugical Transactions A, vol. 6A, pp. 625-630, 1975.
[12] Y. C. Chen, M. E. Fine & J. R. Weertman, "Microstructural evolution and mechanical properties of rapidly solidified A1-Zr-V alloys at high temperatures", Acta Metal Materials, vol. 38, pp. 771-780, 1990.
[13] X. Yu, H. Bakhtiari, J. Zhou, M. Omidi Bidgoli & K. Asemi, "Investigating the Effect of Reinforcing Particles Size and Content on Tensile and Fatigue Properties of Heat-Treated Al7075-SiC Composites Fabricated by the Stir Casting Method", Advances in Characterization of Functional Composite Materials, vol. 74, no. 5, pp. 1859-1869, 2022.
[14] K. E. Knipling, "Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates", Department of materials science and engineering, northwestern university, 2006.
[15] F. H. Froes, "Rapid solidification of light weight metal alloys", Materials Science and Engineering A, vol. 117, pp. 19-32, 1989.
[16] P. Malek, M. Janecek & B. Smola, "Structure and properties of rapidly solidified Al-Zr-Ti alloys", Journal of Materials Science, vol. 35, pp. 2625 – 2633, 2000.
[17] W. S. Chang & B. C. Muddle, "Trialuminide intermetallic alloys for elevated temperature applications – overview", Metals and Materials, vol. 3, pp. 1-15, 1997.
[18] Y. W. Kim, "Rapid solidification of aluminium-vanadium rich alloys", Materials Science and Engineering, vol. 98, pp. 207-211, 1988.
[19] S. Z. Anvari, F. Karimzadeh & M. H. Enayati, "Synthesis and charactevisation of nanostructured Al-Al3V and Al-(Al3V-Al2O3) composites by powerd metallurgy", materials science and Technology, vol. 34, no. 2, pp. 1-12, 2017.
[20] DIN 50125: 2016-12; Testing of Metallic Materials—Tensile Test Pieces. Beuth Verlag GmbH: Berlin, Germany, 2016.
[21] M. E. Kassner, "Fundamental of creep in metals and alloys", (second Edition) Elsevier, Oxford, UK, 2009.
[22] E. A. Marquis, D. N. Seidman & D. C. Dunand, "Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy", Acta Materialia, 51 pp. 4751–4760, 2003.
[23] A. M. Farghalli, P. Kyung-Tae & J. L. Enrique, "Creep behavior of discontinuous SiC-A1 composites", Materials and Engineering, A, vol. 50, pp. 21-35, 1992.
[24] S. Wang, B. Shen, S. Gao, D. Li & M. Tu, "Creep Behavior of Mullite short fiber reinforced ZL109 alloy composite at high temperature", Journal of Materials Technology, vol. 17, no. 4, 2001.
[25] H. J. Frost & M. F. Ashby, "Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics", Pergamon Press, New York, 1982.
[26] K. E. Knipling & D.C. Dunand, "Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400 °C", Scripta Materialia, vol. 59, pp. 387–390, 2008.
[27] K. E. Knipling, D. N. Seidman & D. C. Dunand, "Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys", Acta Materialia, vol. 59, pp. 943–954, 2011.
[28] S. Spigarelli, M. Cabibbo, E. Evangelista & S. Cucchieri, "Evaluation of the creep properties of an Al–17Si–1Mg–0.7Cu alloy", Materials Letters, vol. 56, pp. 1059– 1063, 2002.
[29] Y. Li & T. G. Langdon, "Creep behavior of a reinforced Al-7005 alloy", Acta Materialia, vol. 46, no. 4, pp. 1143-l 155, 1998.
[30] M. K. Premkumar, A. Lawley & M. J. Koczak, "Mechanical behavior of powder metallurgy A1-Fe-Ni alloys", Materials Science and Engineering A, vol. 174, pp.127-139, 1994.
[31] J. C. Ehrstrom & A. Pineau, "Mechanical properties and microstructure of A1-Fe-X alloys", Materials Science and Engineering A, vol. 186, pp. 55-64, 1994.
[32] A. B. Pandey, R. S. Mishra & Y. R. Mahajan, "High-temperature creep of A1-TiB2 particulate composites", Materials Science and Engineering A, vol. 189, pp. 95-104, 1994.
[33] M. E. Van Dalen, D. C. Dunand & D. N. Seidman, "Microstructural evolution and creep properties of precipitation-strengthened Al–0.06Sc–0.02Gd and Al–0.06Sc–0.02Yb (at.%) alloys", Acta Materialia, vol. 59, pp. 5224–5237, 2011.
[34] M. Azadi, A. Behmanesh & H. Aroo, "Creep Behaviors at 275 °C for Aluminum-Matrix Nano-composite under Different Stress Levels1", Archives of Foundry Engineering, vol. 21, no. 3, pp. 81 – 89, 2021.
[35] F. Kiarasi, M. Babaei, M. Omidi Bidgoli, K. M. Kashyzadeh & K. Asemi, "Mechanical characterization and creep strengthening of AZ91 magnesium alloy by addition of yttrium oxide