تأثیر خواص فیزیکی و مکانیکی صفحات پایه و پرنده در شکل فصل مشترک جوشهای انفجاری
محورهای موضوعی : شکل دهی فلزاتحمید بختیاری 1 * , محمدرضا خانزاده 2 *
1 - دکترا، پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.
2 - دانشیار، دانشکده فنی و مهندسی، واحد مبارکه، دانشگاه آزاد اسلامی، اصفهان، ایران.
کلید واژه: جوشکاری انفجاری, شکل فصل مشترک, IMP, WIF,
چکیده مقاله :
این مطالعه تأثیر خواص فیزیکی و مکانیکی بر ریزساختار و جوشپذیری جوشکاری انفجاری را بررسی میکند. جوشپذیری جفتهای فلزی غیرمشابه عمدتاً توسط ارتباط بین خواص فیزیکی مواد پایه تعیین میشود، نه قدرمطلق یک ویژگی ماده خاص. در مواردی که تفاوت قابلتوجهی در هدایت حرارتی بین صفحه پرنده و صفحه پایه وجود دارد، همراه با مادهای که دمای ذوب پایینی را نشان میدهد، جوشپذیری با محدودیت روبرو میشود. در جفتهای فلزی مورد بررسی، مشاهده شد که شکل امواج در طول فرایند جوشکاری زمانی که نسبت بین چگالی صفحه پرنده و صفحه پایه کوچکتر باشد، موجیتر است. همچنین هنگامی که نسبت بین دمای ذوب صفحه پرنده و صفحه پایه کوچکتر بود امواج موجی شکل مشاهده شد.
This study examines the influence of physical and mechanical properties on the microstructure and weldability of explosive welding, specifically in the context of joining two metals with contrasting thermophysical properties. The weldability of dissimilar metal pairs is found to be primarily determined by the relationship between the physical properties of the base materials, rather than the absolute value of a specific material property. In cases where there is a notable disparity in thermal conductivity between the flyer and the base plate, coupled with a material exhibiting a low melting temperature, the weldability of the pair tends to be compromised. During the analysis of the metal pairs, it was noticed that the wave pattern formed during the welding process becomes more undulating when the density ratio between the flying plate and the base plate decreases. A similar observation was made regarding the melting temperature ratio: when the ratio between the melting temperature of the flying plate and the base plate is lower, wavy waves are observed.
[1] C. G. Shi, W. A. N. G. L. S. Yu, Zhao, H. B. Hou & Y. H. Ge, "Detonation mechanism in double vertical explosive welding of stainless steel/steel", Journal of Iron and Steel Research, International, vol. 22, pp. 949-953, 2015.
[2] D. Ji & G. Wei, "MD Simulation of diffusion behaviors in collision welding processes of Al-Cu, Al-Al, Cu-Cu", Computers, Materials & Continua, vol. 79, 2024.
[3] P. Kumar, M. Singh, S. Saravanan, S. Kumari, S. K. Ghosh, J. D. Barma, R. B. Meitei & A. Biswas, "Study of explosive welding of Al 5052 and Al 1100 with stainless steel wire mesh interlayer", Materials Today: Proceedings, 2023.
[4] ح. بختیاری، م. ر. خانزاده قره شیران و س. ع. ا. اکبری موسوی، "تأثير عمليات حرارتي بر روي ريزساختار، سختي و استحكام فصل مشترك جوش انفجاري فولاد زنگ نزن 321 به آلومينيم 1230" مجله علمی پژوهشی فرآيندهاي نوين در مهندسي مواد، دوره 9، شماره 4، ص 27-41، 1393.
[5] D. Rozumek & G. Kwiatkowski, "The influence of heat treatment parameters on the cracks growth under cyclic bending in St-Ti clad obtained by explosive welding", Metals, vol. 9, pp. 338-352, 2019.
[6] I. Kwiecien, P. Bobrowski, M. Janusz-Skuza, A. Wierzbicka-Miernik, A. Tarasek, Z. Szulc & J. Wojewoda-Budka, "Interface characterization of ni/al bimetallic explosively welded plate manufactured with application of exceptionally high detonation speed", Journal of Materials Engineering and Performance, vol. 29, pp. 6286-6294, 2020.
[7] ع. ابراهیمی اکبرآبادی، ع. سعادت، م. ر. خانزاده و ح. بختیاری "بررسی تأثیر عملیات حرارتی پس از جوشکاری بر خواص خوردگی فصل مشترک اتصال انفجاری ورقهای Cu/SS 304" مجله فرآیندهای نوین در مهندسی مواد، دوره 17، شماره 4، ص 51-65، 1402.
[8] A. Rouzbeh, M. Sedighi & R. Hashemi, "Comparison between explosive welding and roll-bonding processes of AA1050/Mg AZ31B bilayer composite sheets considering microstructure and mechanical properties", Journal of Materials Engineering and Performance, vol. 29, pp. 6322-6332, 2020.
[9] V. Korzhyk, Y. Zhang, V. Khaskin, O. Ganushchak, V. Kostin, V. Kvasnytskyi, A. Perepichay & A. Grynyuk, "Features of intermetallic formation in the solid phase on a steel–titanium bimetal interface under the conditions of arc welding", Metals, vol. 13, pp. 1338-1347, 2023.
[10] J. Yuan, F. Shao, L. Bai, H. Zhang, Q. Xu, L. Gao & Y. Pan, "Interface investigation of Ti/Al Explosively Welded Composites with 1060 interlayer: morphology, formation, and development", Composite Interfaces, vol. 32, pp. 201-222, 2023.
[11] م. ر. خانزاده، ا. اکرامی و ح. عربی،" مقاله بررسی تأثیر فاصله توقف بر مورفولوژی و خواص مکانیکی فصل مشترک اتصال انفجاری صفحات سه لایه ضخیم AlMg5 -Al-Steel " مجله علمی پژوهشی فرآيندهاي نوين در مهندسي مواد، دوره 9، شماره 3، ص 1-11، 1394.
[12] S. Saravanan "An experimental investigation on the explosive plugging of similar and dissimilar steel tubes", Welding International, vol. 38, pp. 128-39, 2024.
[13] H. Zhang, K. Jiao, J. L. Zhang & J. Li, "Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding", Materials Science and Engineering, Proc. Conf,731, 278–287, 2018.
[14] V. T. Nguyen, V. T. Nhu & X. T. Vo, "Explosive weld joint characteristics of copper-tantalum via simulation", Computers in Biology and Medicine, vol. 174, pp. 108471, 2024.10.1016/j.compbiomed.2024.108471.
[15] Z. Nyikes & T. Anna Kovács, "Experimental study of the explosive welding process applicability for train weight decreasing", Transportation Research Procedia, vol. 63, pp. 2523-2528, 2022.
[16] M. Wang, J. Hu, K. Li, N. Luo, X. Li, X. Chen & Z. Chen, "Study on the relationship between interface morphology and mechanical properties of explosive welded titanium/duplex stainless steel", International Journal of Advanced Manufacturing Technology, vol. 19, pp. 1-20, 2024.
[17] Gh. Khalaj & A. Fadaei, "Effect of post weld heat treatment on the structure and mechanical properties of explosive welding of austenitic steel 321 - aluminum 1050 – aluminum 5083", Journal of Welding Science and Technology of Iran, vol. 9, pp. 102-112, 2023.
[18] B. Crossland & J. D. Williams, "Explosive welding", Metall, vol. 15, pp. 79-100, 1970.
[19] M. Hammerschmidt & H. Kreye, "Microstructure and bonding mechanism in explosive welding", In: Meyers, M.A. Murr, L.E. (eds) Shock Waves and High-Strain-Rate Phenomena in Metals. Springer, Boston, MA. 1981.
[20] A. S. Bahrani, "The mechanics of wave formation in explosive welding", Mathematical and Physical Sciences, vol. 296, pp. 123–36, 2023.
[21] B. B. Sherpa, M. Yu, D. Inao, S. Tanaka & K. Hokamoto, "Explosive welding of aluminum and cast iron for potential transportation and structural applications", Advanced Engineering Materials, vol. 26, pp. 2301389, 2024.
[22] G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, R. M. Leal & A. Loureiro, "Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers", Journal of Materials Processing Technology, vol. 283, pp. 116707, 2020.
[23] G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, R. M. Leal & A. Loureiro, "The role of physical properties in explosive welding of copper to stainless steel", Defence Technology, vol. 22, pp. 88-98, 2023.
[24] M. A. Salvador, F. Espinosa-Loza, J. W. Elmer & R. Huber, "Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage", International Journal of Hydrogen Energy, vol. 40, pp. 1490-1503, 2015.
[25] B. S. Zlobin, V. V. Kiselev & A. A. Shtertser, "Effect of mechanical properties of materials on wave formation in explosive welding", Combustion, Explosion, and Shock Waves, vol. 55, pp. 439–446, 2019.
[26] G. H. S. F. L. Carvalho, I. Galvão, R. Mendes, R. M. Leal & A. Loureiro, "Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds", Materials and Design, vol. 122, pp. 172-183, 2017.
[27] M. R. Khanzadeh Gharah Shiran, S. J. Mohammadi Baygi, S. R. Kiahoseyni, H. Bakhtiari & M. Allah Dadi, "Effects of heat treatment on the microstructure and metallurgical properties of the explosively bonded 304 stainless steel—CK45 steel", International Journal of Damage Mechanics, pp. 1-19, 2016.
[28] M.R. Khanzadeh, S. A. A. Akbari Mousavi, A. Amadeh & G. H. Liaghat, "Correlation between numerical finite element simulation and experiments for explosive cladding of nickel base super alloy on hot tool steel", Strain, vol. 48, pp. 342–355, 2012.
[29] A. Norbakhsh, M. R. Khanzadeh, A. Saadat & H. Bakhtiari, "Investigating the effect of explosive welding variables on the corrosion behavior of explosive joint of two-layered inconel 718-AISI H13 Hot work to steel plates in salty environment", Journal of Environmental Friendly Materials, vol. 2, pp. 21-27, 2018.
[30] M. R. Khanzadeh Gharah Shiran, H. Bakhtiari, M. Ghafari, S. Rajaee & M. Mohammadnejad, "Investigation of stand-off distance effect on corrosion behavior of explosively welded joint between tow aluminum plate and steel", International Journal of ISSI, vol. 15, pp. 9-18, 2018.
[31] H. Bakhtiari, H. Abbasi, H. Sabet, M. R. Khanzadeh & M. Farvizi, "Investigation on the effects of explosive welding parameters on the mechanical properties and electrical conductivity of Al-Cu bimetal", Journal of Environmental Friendly Materials, vol. 6, pp. 31-37, 2022.
[32] R. Peykari, M. R. Khanzadeh & H. Bakhtiari, "The effect of explosive welding variables on corrosion of copper-304 stainless steel in high salt concentration environment", Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, vol. 14, 2022.
[33] A. Loureiro, R. Mendes, J. B. Ribeiro, R. M. Leal & I. Galvão, "Effect of explosive mixture on quality of explosive welds of copper to aluminium", Materials and Design, vol. 95, pp. 256–267, 2016.
[34] B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, O. V. Antonova, A. M. Patselov, A. V. Inozemtsev, A. V. Plotnikov, A. Volkova, & P. Besshaposhnikov, "The problem of intermixing of metals possessing no mutual solubility upon explosion welding (Cu–Ta, Fe–Ag, Al–Ta)", Materials Characterization, vol. 75, pp. 51-62, 2013.