اثر آلیاژسازی مکانیکی و عملیات حرارتی در ساخت آلیاژ NiTi به روش سنتز احتراقی
محورهای موضوعی : عملیات حرارتیعلیرضا صادقی اول شهر 1 , حسن مستجاب الدعوه 2 , ابوالفضل باباخانی 3 , سید مجتبی زبرجد 4 , اکرم صالحی 5
1 - کارشناس ارشد، مهندسی پزشکی و عضو گروه پژوهشی مواد، جهاد دانشگاهی مشهد
2 - دانشجوی دکتری، مهندسی مواد، دانشگاه سمنان، مشهد
3 - دانشیار، گروه مهندسی مواد، دانشگاه فردوسی مشهد، دانشکده مهندسی، مشهد
4 - استاد، گروه مهندسی مواد، دانشگاه شیراز، دانشکده مهندسی، شیراز
5 - کارشناس ارشد، مهندسی مواد و عضو گروه پژوهشی مواد جهاد دانشگاهی مشهد
کلید واژه: XRD, عملیات حرارتی, سنتز دما بالای انفجاری, آسیاکاری, آلیاژ حافظهدار NiTi,
چکیده مقاله :
در این تحقیق پودرهای نیکل و تیتانیوم با نسبت 50% اتمی نیکل، آسیاکاری شدند و سپس با فشار تکمحوری MPa 150 در دمای محیط به صورت استوانهای شکل پرس شدند. نمونههای NiTi متخلخل با روش سنتز دما بالای انفجاری (TE) در دماهای عملیات حرارتی مختلف (350، 400، 500 و 600 درجه سانتیگراد) و زمانهای آسیاکاری مختلف (5/0، 1 و 2 ساعت) ساخته شدند. اثر دماهای عملیات حرارتی و زمانهای آسیاکاری، با استفاده از میکروسکوپ الکترونی روبشی (SEM) و آنالیز XRD بررسی شد. در محصولات نهایی، آلیاژ حافظهدار NiTi به همراه ترکیبات بین فلزی ثانویه و پودرهای عنصری دیده شد اما در نمونه آسیاکاری شده به مدت 1 ساعت و عملیات حرارتی شده در دمای °C 400، فاز غالب NiTi بود.
In this study Ni and Ti with 50 at. % Ni powders were milled and the cylindrical performs obtained by uniaxial cold compaction under 150 MPa pressure. Porous Ni/Ti specimens were synthesized by thermal explosion (TE) at different preheating temperatures (350 °C, 400 °C, 500 °C and 600 °C) and milling times (0.5, 1 and 2h). The effect of preheating temperatures and milling times on microstructure of final products were investigated by X-ray diffraction analysis (XRD), optical microscopy and scanning electron microscopy (SEM). NiTi shape memory alloy with other secondary intermetallic compounds and elemental powders were observed in the final products. Results showed the dominant phase was NiTi in the sample that milled for 1h and preheated at 400 °C.
[1] S. H. Lee, J. H. Lee, Y. H. Lee, D. H. Shin & Y. S. Kim, “Effect of heating rate on the combustion synthesis of intermetallics”, Materials Science and Engineering A, Vol. 281, pp. 275–285, 2000.
[2] M. Kayaa, N. Orhan, B. Kurt & T. I. Khan, “The effect of solution treatment under loading on the microstructure and phase transformation behavior of porous NiTi shape memory alloy fabricated by SHS”, Journal of Alloys and Compounds, Vol. 475, pp. 378-382, 2009.
[3] J. M. Jani, M. Leary, A. Subic & M. A. Gibson, “A review of shape memory alloy research, applications and opportunities”, Materials and Design, Vol. 56, pp. 1078-1113, 2014.
[4] D. Vojtech, A. Michalcova, J. Capek, I. Marek & L. Dragounova, “Structural and mechanical stability of the nano-crystalline Ni-Ti (50.9 at. % Ni) shape memory alloy during short-term heat treatments”, Intermetallics, Vol. 49, pp. 7-13, 2014.
[5] Biswas, S. K. Roy, K. R. Gurumurthy, N. Prabhu & S. Banerjee, “A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode”, Acta Materialia, Vol. 50, pp. 757–773, 2002.
[6] P. Novák, L. Mejzlíková, A. Michalcová, J. Capek, P. Beran & D. Vojtech, “Effect of SHS conditions on microstructure of NiTi shape memory alloy”, Intermetallics, Vol. 42, pp. 85–91, 2013.
[7] G. Tosun, L. Ozler, M. Kaya & N. Orhan, “A study on microstructure and porosity of NiTi alloy implants produced by SHS”, Journal of Alloys and Compounds, Vol. 487, pp. 605–611, 2009.
[8] M. Whitney, S. F. Corbin & R. B. Gorbet, “Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi”, Intermetallics, Vol. 17, 894–906, 2009.
[9] B. Y. Tay, C. W. Goh, Y. W. Gu, C. S. Lim, M. S. Yong, M. K. Ho & M. H. Myint, “Porous NiTi fabricated by self-propagating high-temperature synthesis of elemental powders”, journal of materials processing technology, Vol. 202, pp. 359–364, 2008.
[10] C. L. Chu, C. Y. Chung, P. H. Lin & S. D. Wang, “Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications”, Journal of Materials Processing Technology, Vol. 169, pp. 103–107, 2005.
[11] C. W. Goh, Y. W. Gu, C. S. Lim & B. Y. Tay, “Influence of nanocrystalline Ni-Ti reaction agent on self-propagating high-temperature synthesized porous NiTi”, Intermetallics, Vol. 15, pp. 461-467, 2007.
[12] Y. Zhou, C. J. Li, G. J. Yang, H. D. Wang & G. Li, “Effect of self-propagating high-temperature combustion synthesis on the deposition of NiTi coating by cold spraying using mechanical alloying Ni/Ti powder”, Intermetallics, Vol. 18, pp. 2154-2158, 2010.
[13] H. C. YI & J. J. MOORE, “Combustion synthesis of TiNi intermetallic compounds”, journal of materials science, Vol. 24, pp. 3456-3462, 1989.
[14] Z. Xiu, X. Xu & J. Laeng, “Phase formation of Ni–Ti via solid state reaction”, PHYSICA SCRIPTA, Vol. T129, pp. 250–254, 2007.
[15] H. Inoue, M. Ishio & T. Takasugi, “Texture of TiNi shape memory alloy sheets produced by roll-bonding and solid phase reaction from elementary metals”, Acta Materialia, Vol. 51, pp. 6373–6383, 2003.