عاملدار کردن و سنتز پایدار نانوکامپوزیت PET-AuNPs به روش سونوشیمی و مطالعات کمی و کیفی الکتروشیمیایی با الکترود اصلاح شده AuNPs-PET/CNT/Au
محورهای موضوعی : پلیمرهای پیشرفتهجواد مرادپور 1 , حسین پیمان 2 , حمیده روشنفکر 3
1 - دانشجو گروه شیمی دانشگاه آزاد اسلامی واحد ایلام
2 - گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد ایلام. عضو هیات علمی
3 - عضو هیات علمی، گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد ایلام
کلید واژه: پلی اتیلن ترفتالات, جاذب, اولتراسونیک, نانوذرات طلا, عاملدار کردن,
چکیده مقاله :
پلی اتیلن ترفتالات در صنایع مختلف کاربرد دارد، اما به دلیل فقدان گروههای عاملی در سطح با محدودیت کاربرد مواجه می باشد و نیازمند اصلاح سطح جهت بهبود کاربرد میباشد. در این پژوهش ابتدا سطح الیاف PET با گروههای کربوکسیلیک اسید عاملدار گردید. سپس، در محیط قلیایی نانوذرات طلا به روش سونوشیمی بصورت پایدار بر سطح آن سنتز شد و اثر پارامتر های موثر بر اندازه و تراکم نانو ذرات بررسی و بهینه گردید (دما، توان دستگاه التراسونیک و pH). از توانایی نانوکامپوزیت PET-AuNPs برای حذف رنگ های صنعتی از محیط زیست استفاده و در حذف و اندازه گیری رنگ متیل اورانژ از محیطهای آبی استفاده شد و اثر غلظت اولیه رنگ، زمان و pH بررسی و بهینه گردید. در اندازهگیری کمی الکتروشیمیایی رنگ، الکترود اصلاح شده AuNPs-PET/CNT/Au در دامنه 20 تا 60 میکرومولار دارای پاسخ خطی بود. حد تشخیص این الکترود 55 میکرومولار و اثر سرعت روبش پتانسیل بر جریان پیک و اثر pH محلول بررسی گردید. مطالعات تعادلات جذب نشان دادند که جذب از ایزوترم تمکین پیروی مینماید.
Polyethylene terephthalate is used in various industries, but due to the lack of functional groups on the surface, it is limited in use and needs surface modification to improve the application. In this study, the surface of PET fibers was first functionalized with carboxylic acid groups. Then, in an alkaline medium, gold nanoparticles were synthesized sonochemically on their surface, and the effect of parameters affecting the size and density of nanoparticles was investigated and optimized (temperature, power of ultrasonic device, and pH). The ability of PET-AuNPs nanocomposites to remove industrial dyes from the environment was used, and the removal and measurement of methyl orange dye from aqueous media were used. The effect of initial dye concentration, time, and pH was investigated and optimized. In quantitative electrochemical dye measurements, the modified AuNPs-PET / CNT / Au electrode had a linear response in the range of 20 to 60 μM. The detection limit of this electrode was 55 μM, and the effect of potential scanning speed on peak flow and the effect of solution pH were investigated. Adsorption equation studies have shown that adsorption follows the obedience isotherm.
[1] E. Vinard, R. Eloy, J. Descotes, J. R. Brudon, H. Guidicelli, J. L. Magne & et al, "Stability of performances of vascular prostheses retrospective study of 22 cases of human implanted prostheses", J. Biomed. Mat. Res, vol. 22, pp. 633-648, 1988.
[2] S. Haulon, P. Devos, S. Willoteaux, C. Mounier-Vehier, A. Sokoloff, P. Halna & et al, "Laparoscopic transperitoneal clipping of the inferior mesenteric artery for the management of type II endoleak after endovascular repair of an aneurysm", Europ. J. Vasc. Endov. Surg, vol. 25, pp. 118-124, 2003.
[3] N. Blanchemain, S. Haulon, F. Boschin, E. Marcon-Bachari, M. Traisnel, M. Morcellet & et al, "Bioinspired titanium drug eluting platforms based on a poly-β-cyclodextrin–chitosan layer-by-layer self-assembly targeting infections", Biomo. Eng, vol. 24, pp. 149-153, 2007.
[4] K. Kottke-Marchant, J. M. Anderson, Y. Umemura & R. E. Marchant, "Effect of albumin coating on the in vitro blood compatibility of Dacron® arterial prostheses", Biomat, vol. 10, pp. 147-155, 1989.
[5] J. Wang, J. Li, L. Shen, R. Ling, Z. Xu, A. Zhao & et al, "Efficiency and stability of narrow-gap semiconductor-based photo electrodes", Nuc. Inst. Meth. Phys. Res. Sec. B, vol. 257, pp. 141-145, 2007.
[6] B. Illingworth, K. Tweden, R. Schroeder & J. Cameron, "In vivo efficacy of silver-coated (Silzone) infection-resistant polyester fabric against a biofilm-producing bacteria", Staphylococcus epidermidis., J. Heart Val. Dis, vol. 7, pp. 524-530, 1998.
[7] K. S. Tweden, J. D. Cameron, A. J. Razzouk, W. R. Holmberg & S. J. Kelly, "Biocompatibility of silver-modified polyester for antimicrobial protection of prosthetic valves", J. Heart Val. Dis, vol. 6, pp. 553-561, 1997.
[8] C. Homsy, K. McDonald, W. Akers, C. Short & B. Freeman, "Surgical suture–canine tissue interaction for six common suture types", J. Biomed. Mater. Res, vol. 2, pp. 215-230, 1968.
[9] M. H. McGrath & S. Mukerji, "Plastic surgery and the teenage patient", J. Ped. Adols. Gyn, vol. 13, pp. 105-118, 2000.
[10] P. Bracco, V. Brunella, L. Trossarelli, A. Coda & F. Botto-Micca, "Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: a chemical and morphological study", Hernia, vol. 9, pp. 51-55, 2005.
[11] J. Zieren, H. Neuss, M. Paul & J. Müller, "The Effect of Size of Materials Formed or Implanted In Vivo on the Macrophage Response and the Resultant Influence on Clinical Outcome", Biomed. Matter. Eng, vol. 14, pp. 127-132, 2004.
[12] E. Vinard, R. Eloy, J. Descotes, J. R. Brudon, H. Guidicelli, J. L. Magne & et al, "Stability of performances of vascular prostheses retrospective study of 22 cases of human implated prostheses", J Biomed Mater Res, vol. 22, pp. 633, 1988.
[13] K. E. Nissen, B. H. Stuart, M. G. Stevens & A. T. Baker, "Characterization of aminated poly (ethylene terephthalate) surfaces for biomedical applications", J Appl Polym Sci, vol. 107, pp. 2394, 2008.
[14] M. J. Bide, M. D. Phaneuf, W. C. Quist, D. J. Dempsey & F. W. LoGerfo, "Bifunctionalized polyester material for surface treatment and biomodification", US patent, vol. 7, no. 037, pp. 527, 2006.
[15] M. Ellison, L. Fisher, K. Alger & S. Zeronian, "Physical properties of polyester fibers degraded by aminolysis and by alkalin hydrolysis", J. App. Poly. Sci, vol. 27, pp. 247-257, 1982.
[16] C. Y. Kao, W. H. Cheng & B. Z. Wan, "Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis", J. App. Poly. Sci, vol. 70, pp. 1939-1945, 1998.
[17] L. N. Bùi, M. Thompson, N. B. McKeown, A. D. Romaschin & P. G. Kalman, "Surface modification of the biomedical polymer poly (ethylene terephthalate)", Analyst, vol. 118, pp. 463-474, 1993
.
[18] A. Y. Fadeev & T. J. McCarthy, "Surface modification of poly (ethylene terephthalate) to prepare surfaces with silica-like reactivity", Langmuir, vol. 14, pp. 5586-5593, 1998.
[19] K. Nissen, B. Stuart, M. Stevens & A. Baker, "Characterization of aminated poly (ethylene terephthalate) surfaces for biomedical applications", J. App. Poly. Sci, vol. 107, pp. 2394-2403, 2008.
[20] K. Okuyama & I. W. Lenggoro, "Preparation of nanoparticles via spray route", Chem. Eng. Sci, vol. 58, pp. 537-547, 2003.
[21] Z. Izadifar, "Efficient Extraction of Phenolic Compounds from Wheat Distiller’s Dried Grain", Ultrasonic Pretreatment and Dielectric Studies: University of Saskatchewan, Saskatoon, 2011.
[22] J. Luche, "Developments of the new 'experimental theory'of sonochemistry initiated in Grenoble", Ultrasonics, vol. 30, pp. 156-162, 1992.
[23] R. Mettin, "Bubble and particle dynamics in acoustic fields: modern trends and applications", 2005.
[24] M. J. Dickens & J. L. Luche, "Further evidence for the effect of ultrasonic waves on electron transfer processes-the case of the kornblum-russell reaction", Tetra. Let, vol. 32, pp. 4709-4712, 1991.
[25] M. Dao, N. V. Chollacoop, K. Van Vliet, T. Venkatesh & S. Suresh, "Nanoindentation investigation on the initiation of yield point phenomenon in a medium Mn steel", Acta Mater, vol. 49, pp. 3899-3918, 2001.
[26] J. R. Selman & Y. P. Line, "Electrochemical characterisation of oxygen reduction on teflon-bonded gas diffusion electrodes", Macdonald, Electrochemical Acta, 2063, 1993.
[27] H. Xu, B. W. Zeiger & K. S. Suslick, "Sonochemical synthesis of nanomaterials", Chemical Society Reviews, vol. 42, no. 7, pp. 2555-2567, 2013.
[28] F. M. Nowak, "Sonochemistry: Theory, Reactions, Syntheses, and Applications", Nova Science Publishers, 2010.
[29] J. H. Bang & K. S. Suslick, "Applications of ultrasound to the synthesis of nanostructured materials", Advanced materials, vol. 22, no. 10, pp. 1039-1059, 2010.
[30] T. J. Mason & J. P. Lorimer, "Applied sonochemistry. The uses of power ultrasound in chemistry and processing", pp. 1-48, 2002.
[31] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang & G. Li, "Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles", Am. Chem. Soc, vol. 126, pp. 273, 2004.
[32] M. P. Scott, J. W. Tamkun & G. W. Hartzell, "The structure and function of the homeodomain", Biochim. Biophy. Acta, vol. 989, pp. 25-48, 1989.
[33] R. A. Mantz, P. C. Trulove, R. T. Carlin & R. A. Osteryoung, "ROESY NMR of basic ambient-temperature chloroaluminate ionic liquids", Inorg. Chem, vol. 34, pp. 3846-3847, 1995.
[34] J. Qu, J. Truhan, S. Dai, H. Luo & P. Blau, "Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive", Tribo. Let, vol. 22, pp. 207-214, 2006.
[35] S. J. Allen, K. Y. Khader & M. Bino, "Electrooxidation of dyestuffs in waste waters", J. Chem. Tech. Biotech, pp. 111-117, 1995.
[36] R. Jain & S. Sikarwar, "Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater", Int. J. Env. Poll, vol. 27, pp. 158-178, 2006.
[37] R. Sanghi & B. Bhattacharya, "Review on decolorisation of aqueous dye solutions by low cost adsorbents", Color. Tech, vol. 118, pp. 256-269, 2002.
[38] P. K. Malik, "Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36", Dye. Pig, vol. 56, pp. 239-249, 2003.
[39] M. X. Zhu, L. Lee, H. H. Wang & Z. Wang, "Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud", J. Haz. Mat, vol. 149, pp. 735-741, 2007.
[40] E. Lorenc-Grabowska & G. Gryglewicz, "Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon", Dye. Pig, vol. 74, pp. 34-40, 2007.
[41] P. Cooper, "Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent", J. Soc. Dye. Colo, vol. 109, pp. 97-100, 1993.
[42] K. Vijayaraghavan & Y. S. Yun, "Biosorption of CI Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp", Dye. Pig, vol. 76, pp. 726-732, 2008.
[43] A. B. Dos Santos, F. J. Cervantes & J. B. Van Lier, "Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology", Biores. Tech, vol. 98, pp. 2369-2385, 2007.
[44] N. Azbar, T. Yonar & K. Kestioglu, "Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent", Chemosphere, vol. 55, PP. 35-43, 2004.
[45] T. Calvete, E. C. Lima, N. F. Cardoso, S. L. Dias & E. S. Ribeiro, "Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye", Air Wat, vol. 38, pp. 521-532, 2010.
[46] C. R. T. Tarley & M. A. Z. Arruda, "Can quantum-mechanical description of physical reality be considered complete", Anal. Sci, vol. 20, pp. 961, 2004.
[47] X. S. Wang & J. P. Chen, "Preparation of Porous Graphene@Mn3O4 and Its Application in the Oxygen Reduction Reaction and Supercapacitor", Air Wat, vol. 37, pp. 793-798, 2009.
[48] A. Olad, A. R. Amani‐Ghadim, M. S. S. Dorraji & M. H. Rasoulifard, "Electrocoagulation treatment of the food dye waste industry: Theoretical and experimental study", Air Wat, vol. 38, pp. 401-408, 2010.
_||_