بررسی تأثیر عملیات حرارتی بر خواص مکانیکی، ساختار انجمادی و جدایش سوپر آلیاژ اینکونل 625 در فرایند ساخت افزایشی به روش رسوبنشانی مستقیم فلزی لیزری
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمحمد گواهیان جهرمی 1 * , رضا شجاع رضوی 2 , حامد نادری سامانی 3 , فرید کرمانی 4
1 - کارشناسی ارشد، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
2 - استاد، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
3 - دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
4 - دانشجوی دکتری، مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران.
کلید واژه: اینکونل 625, ساخت افزایشی, رسوبنشانی مستقیم لیزری, جدایش, همگنسازی,
چکیده مقاله :
یکی از فرایندهای بازسازی و ساخت قطعات، رسوبنشانی مستقیم فلزی لیزری است. در این روش بررسی شرایط ذوب توسط لیزر و انجماد آلیاژ بسیار حائز اهمیت است. هدف از این پژوهش بررسی تأثیر پارامترهای اصلی رسوبنشانی روی ریزساختار، فاصله بازوهای دندریتی و جدایش عناصر آلیاژی و همچنین ارزیابی خواص مکانیکی اینکونل 625 است. با توجه به بررسی تصویر میکروسکوپی الکترونی روبشی، با حرکت از فصل مشترک به سمت بالای روکش با کاهش نسبت ساختار انجمادی از دندریتی ستونی به دندریتی هممحور تغییر یافت. از فصل مشترک به سمت سطح نمونه نرخ سرد شدن افزایش و فاصله بین بازوهای دندریتی کاهش یافت. همچنین با دور شدن از فصل مشترک فاصله بازوی دندریتی افزایش مییابد. با تغییر توان لیزر از 250 به 450 وات نسبت 34/970 کاهش یافت. انجام عملیات حرارتی منجر به یکنواختی عناصر آلیاژی در فاز زمینه شد؛ همچنین با انجام عملیات حرارتی استحکام کششی و ازدیاد طول افزایش و استحکام تسلیم کاهش یافت.
Direct metal laser deposition is using for rebuilding and manufacturing parts. In this method, it is imperative to check the melting and solidification conditions. In this research the effect of the primary process parameters on the microstructure has been investigated. Distance of the dendritic arms, and the segregation of alloy elements, to determine the mechanical properties of IN625. According to the examination of the scanning electron microscope image, by moving from the interface to the top of the cladding. The solidification structure changed from columnar dendritic to coaxial dendritic with decreased G/R ratio. From the interface to the sample’s surface, the cooling rate increased, and the spread between the dendritic arms decreased. By moving away from the interface, the distance of the dendritic arm increases. By changing the laser power from 250 to 450 watts, the G/R ratio decreased from 1252.08 to 970.34 . It was conducting heat treatment led to the uniformity of alloy elements in the background phase. Also, with heat treatment, tensile strength, and elongation increased and yield strength decreased.
[1] M. Perani, S. Baraldo, M. Decker, A. Vandone, A. Valente & B. Paoli, "Track geometry prediction for Laser Metal Deposition based on on-line artificial vision and deep neural networks", Robotics and Computer-Integrated Manufacturing, vol. 79, pp. 102445, 2023.
[2] ک. زنگنهمدار، "مقدمهای بر فلزات و آلیاژهای هوایی"، دانشگاه صنعتی مالک اشتر، بهار 1387.
[3] ر. شجاعرضوی، م. عرفان منش، س. م. برکت، ا. احمدی بنی و ر. احمدی پیدانی، "ساخت افزایشی با رسوب نشانی مستقیم لیزری"، دانشگاه صنعتی مالک اشتر، پاییز 1399.
[4] R. H. AL-Nafeay, A. O. AL-Roubaiy & H. Omidvar, "Overview of Joining and Repairing Techniques of Ni-Based Superalloy for Industrial Gas Turbine Applications", In IOP Conference Series: Materials Science and Engineering, vol. 1094, pp. 012141, 2021.
[5] Y. T. Long, P. L. Nie, Z. G. Li, J. Huang, L. I. Xiang & X. M. Xu, "Segregation of niobium in laser cladding Inconel 718 superalloy", Transactions of Nonferrous Metals Society of China, vol. 26, no. 2, pp. 431-436, 2016.
[6] G. Ravi, N. Murugan & R. Arulmani, "Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing", Materials Science and Technology, vol. 36, no. 16, pp. 1785-1795, 2020.
[7] S. Jelvani, S. R. Shoja-Razavi, M. Barekat, M. R. Dehnavi & M. Erfanmanesh, "Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy", Optics & Laser Technology, vol. 120, pp. 105761, 2019.
[8] X. Wang, C. Chen, L. Qin & M. Zhang, "Microstructure Evolution and Mechanical Behavior of Inconel 625 Produced Using Direct Laser Metal Deposition", Physics of Metals and Metallography, vol. 122, pp. 896-907, 2021.
[9] A. A. Ferreira, R. L. Amaral, P. C. Romio, J. M. Cruz, A. R., Reis & M. F. Vieira, "Deposition of nickel-based superalloy claddings on low alloy structural steel by direct laser deposition", Metals, vol. 11, no. 8, pp. 1326, 2021.
[10] Y. Cao, N. Farouk, M., Taheri, A. V. Yumashev, S. F. K. Bozorg & O. O. Ojo, "Evolution of solidification and microstructure in laser-clad IN625 superalloy powder on GTD-111 superalloy", Surface and Coatings Technology, vol. 412, pp. 127010, 2021.
[11] F. Kermani, R. Shoja-Razavi, K. Zangenemadar, M. Borhani & M. Gavahian, "An investigation into the effect of scanning pattern and heat treatment on the mechanical properties of Inconel 718 in the direct metal deposition process", Journal of Materials Research and Technology, vol. 24, pp. 4743-4755, 2023.
[12] L. Xinxu, J. Chonglin, Z. Yong, L. Shaomin & J. Zhouhua, "Segregation and homogenization for a new nickel-based superalloy", Vacuum, vol. 177, pp. 109379, 2020.
[13] Y. L. Hu, Y. L. Li, S. Y. Zhang, X. Lin, Z. H. Wang & W. D. Huang, "Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition", Materials Science and Engineering: A, vol. 772, pp. 138711, 2020.
[14] P. Zhao, Y. Zhang, W. Liu, K. Zheng & Y. Luo, "Influence mechanism of laser defocusing amount on surface texture in direct metal deposition", Journal of Materials Processing Technology, vol. 312, pp. 117822, 2023.
[15] C. Zhong, J. Kittel, A. Gasser & J. H. Schleifenbaum, "Study of alloys Inconel 718 and Inconel 625 nickel-based super- in high-deposition-rate laser metal deposition", Optics & Laser Technology, vol. 109, pp. 352-360, 2019.
[16] ف. کرمانی، س. ر. شجاع رضوی، ک. زنگنه مدار و م. ر. برهانی، "ارزیابی تأثیر الگوی روبش بر بافت انجمادی اینکونل 718 در فرایند رسوب نشانی مستقیم لیزری." نشریه علوم و مهندسی سطح، دوره 17، شماره 50، صفحه 27-17، 1400.
[17] O. G. Rivera, P. G. Allison, J. B. Jordon, O. L. Rodriguez, L. N. Brewer, Z. McClelland & N. Hardwick, "Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing", Materials Science and Engineering: A, vol. 694, pp. 1-9, 2017.
[18] A. N. M. Tanvir, M. R. Ahsan, G. Seo, J. D. Kim, C. Ji, B. Bates & D. B. Kim, (2020). "Heat treatment effects on Inconel 625 components fabricated by wire+ arc additively manufacturing (WAAM)—part 2: mechanical properties", The International Journal of Advanced Manufacturing Technology, vol. 110, pp. 1709-1721, 2020.
[19] F. Kermani, R. Shoja-Razavi, K. Zangenemadar, M. Borhani & M. Gavahian, "Optimization of single-pass geometric characteristics of IN718 by fiber laser via linear regression and response surface methodology", Journal of Materials Research and Technology, vol. 24, pp. 274-289, 2023.
[20] G. H. S. F. L. Carvalho & et al. "Development of optimal deposition strategies for cladding of Inconel 625 on carbon steel using wire arc additive manufacturing", Surface and Coatings Technology, vol. 453, pp. 129128, 2023.
[21] S. Li, J. Y. Li, Z. W. Jiang, Y. Cheng, Y. Z. Li, S. Tang & K. H. Wang, "Controlling the columnar-to-equiaxed transition during Directed Energy Deposition of Inconel 625", Additive Manufacturing, vol. 57, pp. 102958, 2022.
[22] A. A. Ferreira, O. Emadinia, R. L. Amaral, J. M. Cruz, A. R Reis & M. F. Vieira, "Mechanical and microstructural characterisation of Inconel 625-AISI 431 steel bulk produced by direct laser deposition", Journal of Materials Processing Technology, vol. 306, pp. 117603, 2022.
[23] K. O. Yu, "Modeling for casting and solidification processing", CRC Press, vol. 54, no. 6, pp. 64, 2001.
[24] M. Hong, S. Wang, W. Sun, Z. Geng, J. Xin & L. Ke, "Effect of welding speed on microstructure and mechanical properties of selective laser melting Inconel 625 alloy laser welded joint", Journal of Materials Research and Technology, vol. 19, pp. 2093-2103, 2022.
[25] G. Meng, Y. Gong, J. Zhang, L. Zhu, H. Xie, & J. Zhao, "Multi-scale simulation of microstructure evolution during direct laser deposition of Inconel718", International Journal of Heat and Mass Transfer, vol. 191, pp. 122798, 2022.
[26] X. Xing, X. Di & B. Wang, "The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal", Journal of Alloys and Compounds, vol. 593, pp. 110-116, 2014.
[27] K. Feng, Y. Chen, P. Deng, Y. Li, H. Zhao, F. Lu & Z. Li, "Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding", Journal of Materials Processing Technology, vol. 243, pp. 82-91, 2017.
[28] P. Petrzak, K. Kowalski & M. Blicharski, "Analysis of phase transformations in Inconel 625 alloy during annealing", Acta Physica Polonica A, vol. 130, no, 4, pp 1041-1044, 2016.